

Expectation maximization

Subhransu Maji

CMPSCI 689: Machine Learning

14 April 2015

Motivation

- ◆ Suppose you are building a **naive Bayes spam classifier**. After you are done your boss tells you that there is no money to label the data.
 - ▶ You have a **probabilistic model** that assumes **labelled data**, but you don't have any **labels**. Can you still do something?
- ◆ Amazingly you can!
 - ▶ Treat the **labels** as **hidden variables** and try to learn them simultaneously along with the **parameters** of the model
- ◆ Expectation Maximization (EM)
 - ▶ A broad family of algorithms for solving **hidden variable** problems
 - ▶ In today's lecture we will derive **EM** algorithms for **clustering** and **naive Bayes classification** and learn why **EM** works

Gaussian mixture model for clustering

- ◆ Suppose data comes from a **Gaussian Mixture Model (GMM)** – you have K **clusters** and the data from the **cluster** k is drawn from a **Gaussian** with mean μ_k and variance σ_k^2
- ◆ We will assume that the data comes with **labels** (we will soon remove this assumption)
- ◆ Generative story of the data:
 - ▶ For each example $n = 1, 2, \dots, N$
 - Choose a label $y_n \sim \text{Mult}(\theta_1, \theta_2, \dots, \theta_K)$
 - Choose example $\mathbf{x}_n \sim N(\mu_{y_n}, \sigma_{y_n}^2)$
- ◆ **Likelihood** of the data:

$$p(\mathcal{D}) = \prod_{n=1}^N p(y_n) p(\mathbf{x}_n | y_n) = \prod_{n=1}^N \theta_{y_n} N(\mathbf{x}_n; \mu_{y_n}, \sigma_{y_n}^2)$$

$$p(\mathcal{D}) = \prod_{n=1}^N \theta_{y_n} (2\pi\sigma_{y_n}^2)^{-\frac{D}{2}} \exp\left(-\frac{\|\mathbf{x}_n - \mu_{y_n}\|^2}{2\sigma_{y_n}^2}\right)$$

GMM: known labels

- ◆ Likelihood of the data:

$$p(\mathcal{D}) = \prod_{n=1}^N \theta_{y_n} (2\pi\sigma_{y_n}^2)^{-\frac{D}{2}} \exp\left(-\frac{\|\mathbf{x}_n - \mu_{y_n}\|^2}{2\sigma_{y_n}^2}\right)$$

- ◆ If you knew the labels y_n then the maximum-likelihood estimates of the parameters is easy:

$$\theta_k = \frac{1}{N} \sum_n [y_n = k]$$

fraction of examples
with label k

$$\mu_k = \frac{\sum_n [y_n = k] \mathbf{x}_n}{\sum_n [y_n = k]}$$

mean of all the
examples with label k

$$\sigma_k^2 = \frac{\sum_n [y_n = k] \|\mathbf{x}_n - \mu_k\|^2}{\sum_n [y_n = k]}$$

variance of all the
examples with label k

GMM: unknown labels

- ◆ Now suppose you didn't have **labels y_n** . Analogous to **k-means**, one solution is to iterate. Start by guessing the **parameters** and then repeat the two steps:
 - ▶ Estimate **labels** given the **parameters**
 - ▶ Estimate **parameters** given the **labels**
- ◆ In **k-means** we assigned each point to a single cluster, also called as **hard assignment** (point 10 goes to cluster 2)
- ◆ In **expectation maximization (EM)** we will use **soft assignment** (point 10 goes half to cluster 2 and half to cluster 5)
- ◆ Lets define a random variable $\mathbf{z}_n = [z_1, z_2, \dots, z_k]$ to denote the **assignment vector** for the n^{th} point
 - ▶ **Hard assignment:** only one of z_k is 1, the rest are 0
 - ▶ **Soft assignment:** z_k is positive and sum to 1

GMM: parameter estimation

- ◆ Formally $z_{n,k}$ is the probability that the n^{th} point goes to cluster k

$$z_{n,k} = p(y_n = k | \mathbf{x}_n)$$

$$= \frac{P(y_n = k, \mathbf{x}_n)}{P(\mathbf{x}_n)}$$

$$\propto P(y_n = k) P(\mathbf{x}_n | y_n) = \theta_k N(\mathbf{x}_n; \mu_k, \sigma_k^2)$$

- ◆ Given a set of parameters $(\theta_k, \mu_k, \sigma_k^2)$, $z_{n,k}$ is easy to compute
- ◆ Given $z_{n,k}$, we can update the parameters $(\theta_k, \mu_k, \sigma_k^2)$ as:

$$\theta_k = \frac{1}{N} \sum_n z_{n,k}$$

fraction of examples
with label k

$$\mu_k = \frac{\sum_n z_{n,k} \mathbf{x}_n}{\sum_n z_{n,k}}$$

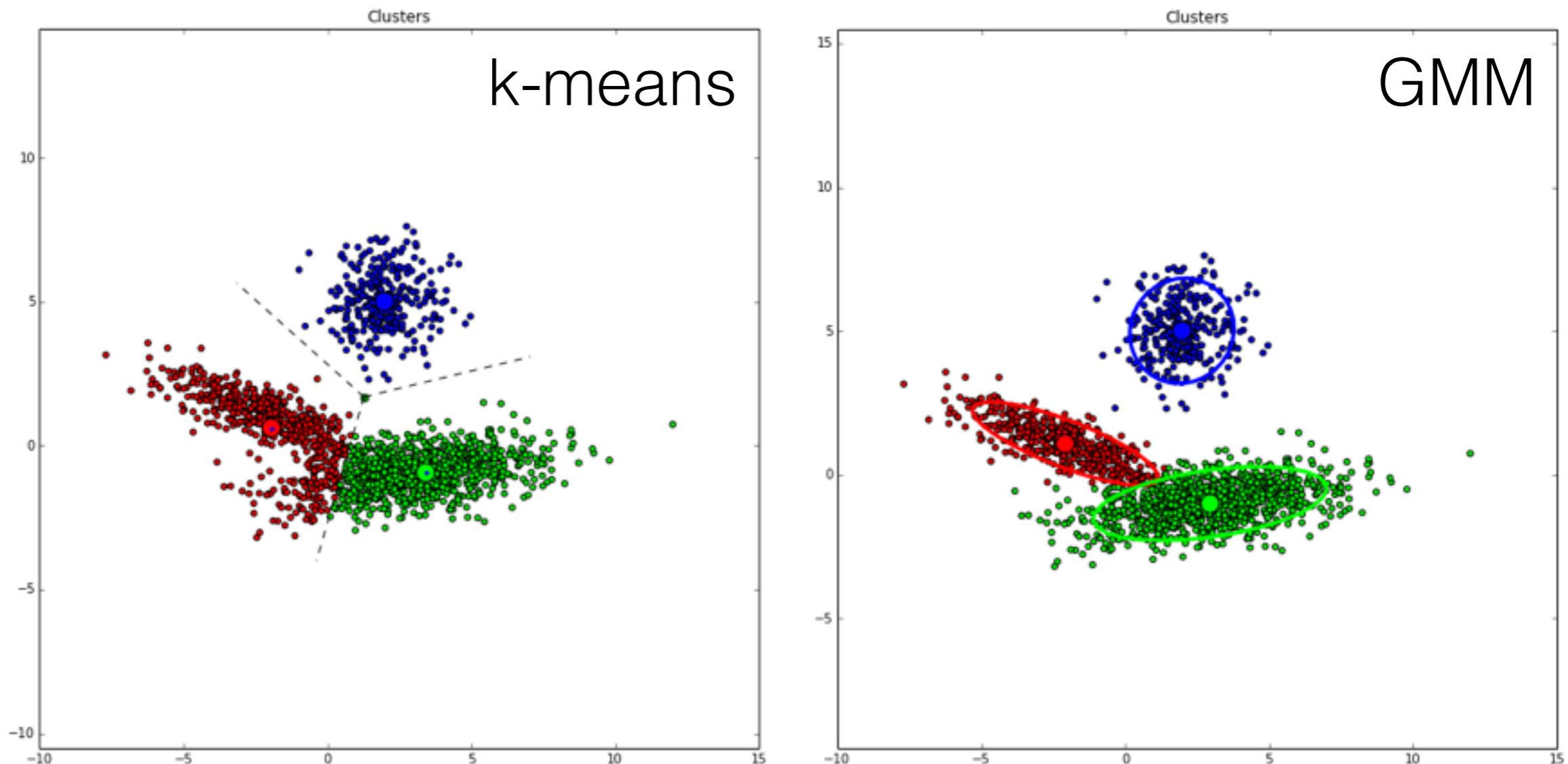
mean of all the fractional
examples with label k

$$\sigma_k^2 = \frac{\sum_n z_{n,k} \|\mathbf{x}_n - \mu_k\|^2}{\sum_n z_{n,k}}$$

variance of all the fractional
examples with label k

GMM: example

- ◆ We have replaced the indicator variable $[y_n = k]$ with $p(y_n=k)$ which is the **expectation** of $[y_n=k]$. This is our guess of the **labels**.
- ◆ Just like **k-means** the EM is susceptible to **local minima**.
- ◆ Clustering example:



<http://nbviewer.ipython.org/github/NICTA/MLSS/tree/master/clustering/>

The EM framework

- ◆ We have data with **observations \mathbf{x}_n** and **hidden variables \mathbf{y}_n** , and would like to estimate **parameters θ**
- ◆ The likelihood of the **data** and **hidden variables**:

$$p(\mathcal{D}) = \prod_n p(\mathbf{x}_n, \mathbf{y}_n | \theta)$$

- ◆ Only \mathbf{x}_n are known so we can compute the **data** likelihood by marginalizing out the \mathbf{y}_n :

$$p(\mathbf{X} | \theta) = \prod_n \sum_{\mathbf{y}_n} p(\mathbf{x}_n, \mathbf{y}_n | \theta)$$

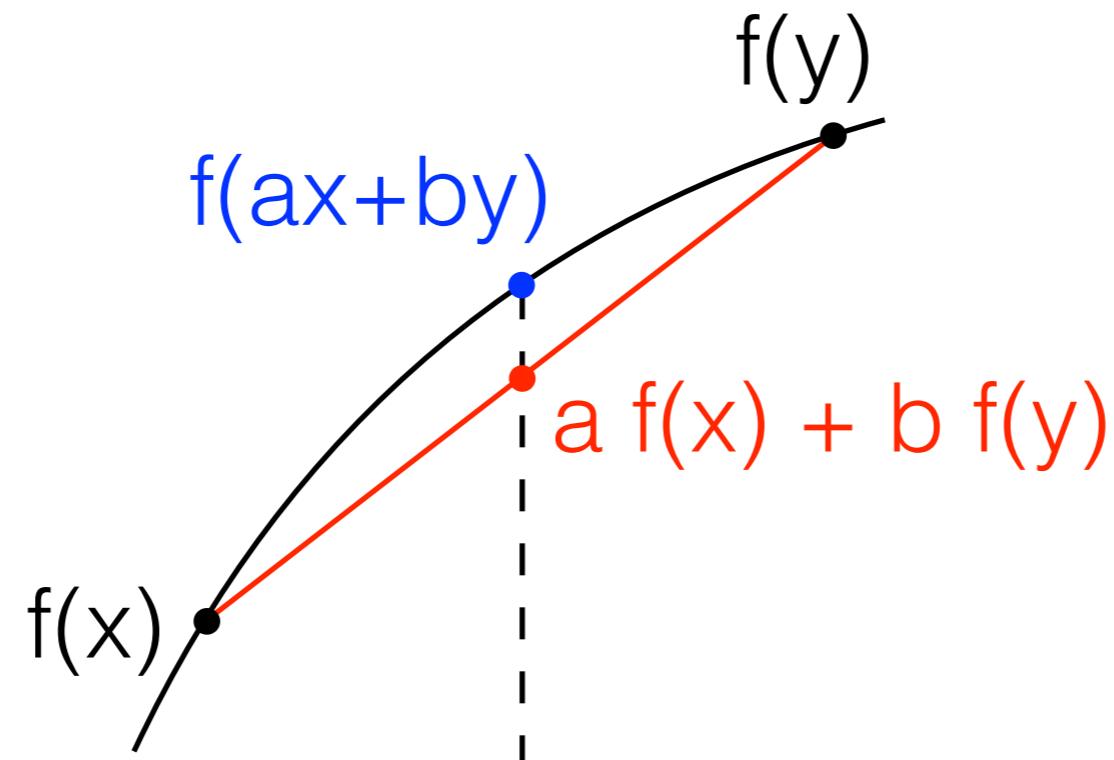
- ◆ **Parameter** estimation by maximizing log-likelihood:

$$\theta_{\text{ML}} \leftarrow \arg \max_{\theta} \sum_n \log \left(\sum_{\mathbf{y}_n} p(\mathbf{x}_n, \mathbf{y}_n | \theta) \right)$$

hard to maximize since the sum is inside the log

Jensen's inequality

- ◆ Given a **concave** function f and a set of weights $\lambda_i \geq 0$ and $\sum_i \lambda_i = 1$
- ◆ **Jensen's inequality** states that $f(\sum_i \lambda_i x_i) \geq \sum_i \lambda_i f(x_i)$
- ◆ This is a direct consequence of **concavity**
 - ▶ $f(ax + by) \geq a f(x) + b f(y)$ when $a \geq 0, b \geq 0, a + b = 1$



The EM framework

- ◆ Construct a **lower bound** the log-likelihood using **Jensen's inequality**

$$\begin{aligned}\mathcal{L}(\mathbf{X}|\theta) &= \sum_n \log \left(\sum_{y_n} p(\mathbf{x}_n, y_n | \theta) \right) \\ &= \sum_n \log \left(\sum_{y_n} q(y_n) \frac{p(\mathbf{x}_n, y_n | \theta)}{q(y_n)} \right) \quad \text{Jensen's inequality} \\ &\geq \sum_n \sum_{y_n} q(y_n) \log \left(\frac{p(\mathbf{x}_n, y_n | \theta)}{q(y_n)} \right) \\ &= \sum_n \sum_{y_n} [q(y_n) \log p(\mathbf{x}_n, y_n | \theta) - q(y_n) \log q(y_n)] \\ &\triangleq \hat{\mathcal{L}}(\mathbf{X}|\theta)\end{aligned}$$

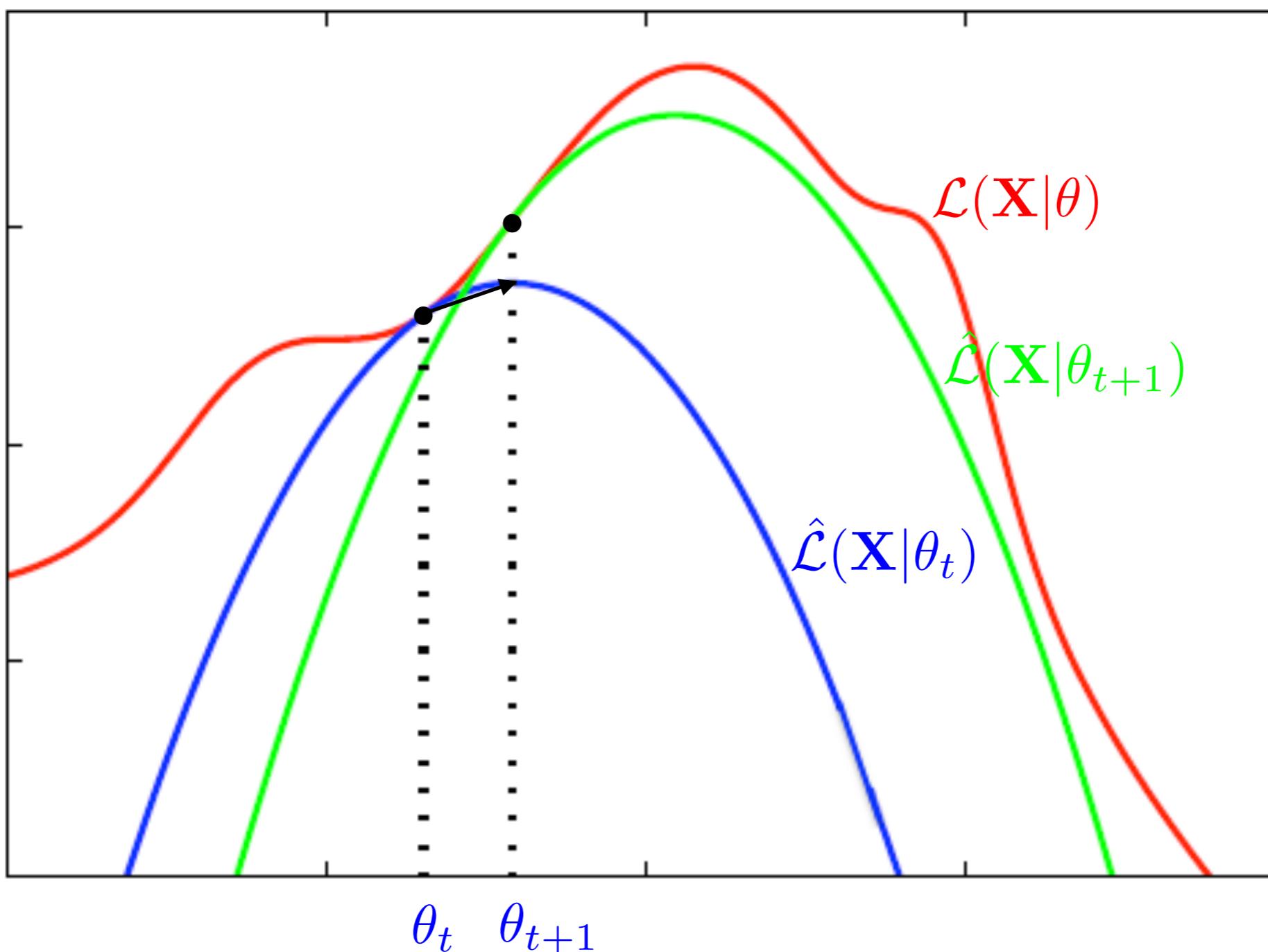
- ◆ Maximize the **lower bound**:

independent of θ

$$\theta \leftarrow \arg \max_{\theta} \sum_n \sum_{y_n} q(y_n) \log p(\mathbf{x}_n, y_n | \theta)$$

Lower bound illustrated

- ◆ Maximizing the lower bound increases the value of the original function if the lower bound touches the function at the current value



An optimal lower bound

- ◆ Any choice of the probability distribution $q(y_n)$ is valid as long as the **lower bound** touches the function at the current estimate of θ

$$\mathcal{L}(\mathbf{X}|\theta_t) = \hat{\mathcal{L}}(\mathbf{X}|\theta_t)$$

- ◆ We can pick the optimal $q(y_n)$ by **maximizing** the lower bound

$$\arg \max_q \sum_{y_n} [q(y_n) \log p(\mathbf{x}_n, y_n | \theta) - q(y_n) \log q(y_n)]$$

- ◆ This gives us $q(y_n) \leftarrow p(y_n | \mathbf{x}_n, \theta_t)$
 - ▶ Proof: use Lagrangian multipliers with “sum to one” constraint
- ◆ This is the distributions of the hidden variables **conditioned on the data** and the current estimate of the **parameters**
 - ▶ This is exactly what we computed in the GMM example

The EM algorithm

- ◆ We have data with observations \mathbf{x}_n and hidden variables \mathbf{y}_n , and would like to estimate parameters θ of the distribution $p(\mathbf{x} \mid \theta)$
- ◆ **EM algorithm**

- ▶ Initialize the parameters θ randomly
- ▶ Iterate between the following two steps:
 - **E step:** Compute probability distribution over the hidden variables

$$q(y_n) \leftarrow p(y_n | \mathbf{x}_n, \theta)$$

- ▶ **M step:** Maximize the lower bound

$$\theta \leftarrow \arg \max_{\theta} \sum_n \sum_{y_n} q(y_n) \log p(\mathbf{x}_n, y_n | \theta)$$

- ◆ **EM algorithm** is a great candidate when **M-step** can be done easily but $p(\mathbf{x} \mid \theta)$ cannot be easily optimized over θ
 - ▶ For e.g. for GMMs it was easy to compute means and variances given the memberships

Naive Bayes: revisited

- ◆ Consider the **binary prediction** problem
- ◆ Let the data be distributed according to a probability distribution:

$$p_{\theta}(y, \mathbf{x}) = p_{\theta}(y, x_1, x_2, \dots, x_D)$$

- ◆ We can simplify this using the **chain rule** of probability:

$$\begin{aligned} p_{\theta}(y, \mathbf{x}) &= p_{\theta}(y)p_{\theta}(x_1|y)p_{\theta}(x_2|x_1, y) \dots p_{\theta}(x_D|x_1, x_2, \dots, x_{D-1}, y) \\ &= p_{\theta}(y) \prod_{d=1}^D p_{\theta}(x_d|x_1, x_2, \dots, x_{d-1}, y) \end{aligned}$$

- ◆ **Naive Bayes** assumption:

$$p_{\theta}(x_d|x_{d'}, y) = p_{\theta}(x_d|y), \forall d' \neq d$$

- ◆ E.g., The words “**free**” and “**money**” are independent given **spam**

Naive Bayes: a simple case

- ◆ Case: **binary labels** and **binary features**

$$\left. \begin{array}{l} p_\theta(y) = \text{Bernoulli}(\theta_0) \\ p_\theta(x_d|y=1) = \text{Bernoulli}(\theta_d^+) \\ p_\theta(x_d|y=-1) = \text{Bernoulli}(\theta_d^-) \end{array} \right\} \text{1+2D parameters}$$

- ◆ Probability of the data:

$$\begin{aligned} p_\theta(y, \mathbf{x}) &= p_\theta(y) \prod_{d=1}^D p_\theta(x_d|y) \\ &= \theta_0^{[y=+1]} (1 - \theta_0)^{[y=-1]} \\ &\quad \cdots \times \prod_{d=1}^D \theta_d^{+[x_d=1, y=+1]} (1 - \theta_d^+)^{[x_d=0, y=+1]} \quad // \text{label +1} \\ &\quad \cdots \times \prod_{d=1}^D \theta_d^{-[x_d=1, y=-1]} (1 - \theta_d^-)^{[x_d=0, y=-1]} \quad // \text{label -1} \end{aligned}$$

Naive Bayes: parameter estimation

- ◆ Given data we can estimate the **parameters** by maximizing **data likelihood**
- ◆ The **maximum likelihood** estimates are:

$$\hat{\theta}_0 = \frac{\sum_n [y_n = +1]}{N} \quad // \text{fraction of the data with label as } +1$$

$$\hat{\theta}_d^+ = \frac{\sum_n [x_{d,n} = 1, y_n = +1]}{\sum_n [y_n = +1]} \quad // \text{fraction of the instances with 1 among } +1$$

$$\hat{\theta}_d^- = \frac{\sum_n [x_{d,n} = 1, y_n = -1]}{\sum_n [y_n = -1]} \quad // \text{fraction of the instances with 1 among } -1$$

Naive Bayes: EM

- ◆ Now suppose you don't have labels y_n
- ◆ Initialize the parameters θ randomly
- ◆ **E step:** compute the distribution over the hidden variables $q(y_n)$

$$q(y_n = 1) = p(y_n = +1 | \mathbf{x}_n, \theta) \propto \theta_0^+ \prod_{d=1}^D \theta_d^{+[x_{d,n}=1]} (1 - \theta_d^+)^{[x_{d,n}=0]}$$

- ◆ **M step:** estimate θ given the guesses

$$\theta_0 = \frac{\sum_n q(y_n = 1)}{N}$$

// fraction of the data with label as +1

$$\theta_d^+ = \frac{\sum_n [x_{d,n} = 1] q(y_n = 1)}{\sum_n q(y_n = 1)}$$

// fraction of the instances with 1 among +1

$$\theta_d^- = \frac{\sum_n [x_{d,n} = 1] q(y_n = -1)}{\sum_n q(y_n = -1)}$$

// fraction of the instances with 1 among -1

Summary

◆ Expectation maximization

- ▶ A general technique to estimate **parameters** of probabilistic models when some **observations** are **hidden**
- ▶ EM iterates between **estimating** the hidden variables and **optimizing parameters** given the hidden variables
- ▶ EM can be seen as a maximization of the lower bound of the data log-likelihood — we used **Jensen's inequality** to switch the **log-sum** to **sum-log**

◆ EM can be used for learning:

- ▶ mixtures of distributions for clustering, e.g. GMM
- ▶ parameters for hidden Markov models (next lecture)
- ▶ topic models in NLP
- ▶ probabilistic PCA
- ▶

Slides credit

- ◆ Some of the slides are based on CML book by Hal Daume III
- ◆ The figure for the EM lower bound is based on <https://cxwangyi.wordpress.com/2008/11/>
- ◆ Clustering k-means vs GMM is from <http://nbviewer.ipython.org/github/NICTA/MLSS/tree/master/clustering/>