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Suppose you are building a naive Bayes spam classifier. After your 
are done your boss tells you that there is no money to label the data.!
‣ You have a probabilistic model that assumes labelled data, but you 

don't have any labels. Can you still do something? 
!

Amazingly you can!!
‣ Treat the labels as hidden variables and try to learn them 

simultaneously along with the parameters of the model 
!

Expectation Maximization (EM) !
‣ A broad family of algorithms for solving hidden variable problems 
‣ In today’s lecture we will derive EM algorithms for clustering and 

naive Bayes classification and learn why EM works

Motivation

2



Subhransu Maji (UMASS)CMPSCI 689 /19

Suppose data comes from a Gaussian Mixture Model (GMM) — you 
have K clusters and the data from the cluster k is drawn from a 
Gaussian with mean μk and variance σk2!

We will assume that the data comes with labels (we will soon remove 
this assumption)!
Generative story of the data:!
‣ For each example n = 1, 2, .., N 

➡ Choose a label 
➡ Choose example  

Likelihood of the data:

Gaussian mixture model for clustering
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Likelihood of the data:!
!
!
!
If you knew the labels yn then the maximum-likelihood estimates of 
the parameters is easy:

GMM: known labels
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Now suppose you didn’t have labels yn. Analogous to k-means, one 
solution is to iterate. Start by guessing the parameters and then 
repeat the two steps:!
‣ Estimate labels given the parameters 
‣ Estimate parameters given the labels 
!
In k-means we assigned each point to a single cluster, also called as 
hard assignment (point 10 goes to cluster 2)!
In expectation maximization (EM) we will will use soft assignment 
(point 10 goes half to cluster 2 and half to cluster 5)!
!
Lets define a random variable zn = [z1, z2, …, zK] to denote the 
assignment vector for the nth point!
‣ Hard assignment: only one of zk is 1, the rest are 0 
‣ Soft assignment: zk is positive and sum to 1

GMM: unknown labels
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Formally zn,k is the probability that the nth point goes to cluster k!
!
!
!
!
!
Given a set of parameters (θk,μk,σk2), zn,k is easy to compute!
Given zn,k , we can update the parameters  (θk,μk,σk2) as:

GMM: parameter estimation
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We have replaced the indicator variable [yn = k] with p(yn=k) which is 
the expectation of [yn=k]. This is our guess of the labels.!
Just like k-means the EM is susceptible to local minima.!
Clustering example:

GMM: example
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http://nbviewer.ipython.org/github/NICTA/MLSS/tree/master/clustering/

k-means GMM

http://nbviewer.ipython.org/github/NICTA/MLSS/tree/master/clustering/


Subhransu Maji (UMASS)CMPSCI 689 /19

We have data with observations xn and hidden variables yn, and would 
like to estimate parameters θ!
The likelihood of the data and hidden variables:!
!
!
Only xn are known so we can compute the data likelihood by 
marginalizing out the yn:!
!
!
!
Parameter estimation by maximizing log-likelihood:

The EM framework
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Given a concave function f and a set of weights λi ≥ 0 and ∑ᵢ λᵢ  = 1!
Jensen’s inequality states that f(∑ᵢ λᵢ  xᵢ) ≥ ∑ᵢ λᵢ f(xᵢ)!
This is a direct consequence of concavity!
‣ f(ax + by) ≥ a f(x) + b f(y) when a ≥ 0, b ≥ 0, a + b = 1

Jensen’s inequality
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Construct a lower bound the log-likelihood using Jensen’s inequality!
!
!
!
!
!
!
!
!
!
!
Maximize the lower bound:

The EM framework
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Maximizing the lower bound increases the value of the original 
function if the lower bound touches the function at the current value

Lower bound illustrated
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Any choice of the probability distribution q(yn) is valid as long as the 
lower bound touches the function at the current estimate of θ"
!

We can the pick the optimal q(yn) by maximizing the lower bound!
!
!
This gives us!
‣ Proof: use Lagrangian multipliers with “sum to one” constraint 
!

This is the distributions of the hidden variables conditioned on the 
data and the current estimate of the parameters!
‣ This is exactly what we computed in the GMM example

An optimal lower bound
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We have data with observations xn and hidden variables yn, and would 
like to estimate parameters θ of the distribution p(x | θ)!
EM algorithm!
‣ Initialize the parameters θ randomly 
‣ Iterate between the following two steps: 

➡ E step: Compute probability distribution over the hidden variables 
!

➡ M step: Maximize the lower bound 
!

!
!
EM algorithm is a great candidate when M-step can done easily but 
p(x | θ) cannot be easily optimized over θ!
‣ For e.g. for GMMs it was easy to compute means and variances 

given the memberships

The EM algorithm
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Consider the binary prediction problem!
Let the data be distributed according to a probability distribution:!
!
!
We can simplify this using the chain rule of probability:!
!
!
!
!
Naive Bayes assumption:!
!
!
!
E.g., The words “free” and “money” are independent given spam

Naive Bayes: revisited
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Case: binary labels and binary features!
!
!
!
!
Probability of the data:

Naive Bayes: a simple case
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Given data we can estimate the parameters by maximizing data 
likelihood!
The maximum likelihood estimates are:

Naive Bayes: parameter estimation
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Now suppose you don’t have labels yn!
Initialize the parameters θ randomly!
E step: compute the distribution over the hidden variables q(yn)!
!
!
M step: estimate θ given the guesses

Naive Bayes: EM
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Expectation maximization!
‣ A general technique to estimate parameters of probabilistic models 

when some observations are hidden 
‣ EM iterates between estimating the hidden variables and 

optimizing parameters given the hidden variables 
‣ EM can be seen as a maximization of the lower bound of the data 

log-likelihood — we used Jensen’s inequality to switch the log-sum 
to sum-log 

EM can be used for learning:!
‣ mixtures of distributions for clustering, e.g. GMM 
‣ parameters for hidden Markov models (next lecture) 
‣ topic models in NLP 
‣ probabilistic PCA 
‣ ….

Summary
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Some of the slides are based on CIML book by Hal Daume III!
The figure for the EM lower bound is based on https://
cxwangyi.wordpress.com/2008/11/!
Clustering k-means vs GMM is from http://nbviewer.ipython.org/
github/NICTA/MLSS/tree/master/clustering/

Slides credit
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