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Motivation

¢ Suppose you are building a naive Bayes spam classifier. After your
are done your boss tells you that there is no money to label the data.

» You have a probabilistic model that assumes labelled data, but you
don't have any labels. Can you still do something?

¢ Amazingly you can!

» Treat the labels as hidden variables and try to learn them
simultaneously along with the parameters of the model

¢ Expectation Maximization (EM)
» A broad family of algorithms for solving hidden variable problems

» In today’s lecture we will derive EM algorithms for clustering and
naive Bayes classification and learn why EM works
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Gaussian mixture model for clustering

¢ Suppose data comes from a Gaussian Mixture Model (GMM) — you
have K clusters and the data from the cluster k is drawn from a
Gaussian with mean Uk and variance ox2

+ We will assume that the data comes with labels (we will soon remove
this assumption)

+ Generative story of the data:
» Foreach examplen=1,2,.., N
= Choose a label y, ~ Mult(6,60s,...,0k)
= Choose example x,, ~ N (uy,o7)
¢ Likelihood of the data:

N N
— H p(Xp|yn) = H HynN(XnQMme;n)
n=1 n=1
N 2
D _
Lo ) e (o)
n=1 QO-y”
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GMM: known labels

¢ Likelihood of the data:

N 5 B 2
p(0) =[] 0, (203, ) exp (=120 el
n=1

2
20y,

¢ If you knew the labels y, then the maximume-likelihood estimates of
the parameters is easy:

1 fraction of examples
0, = — . =k P
PN ;[y | with label k
= > nlyn = k|xy mean of all the
’ D nlYn = K] examples with label k
2 _ > lyn = Ell|xn — prl|? variance of all the
i S [y = K] examples with label k
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GMM: unknown labels

+ Now suppose you didn’t have labels yn. Analogous to k-means, one

solution is to iterate. Start by guessing the parameters and then
repeat the two steps:

» Estimate labels given the parameters
» Estimate parameters given the labels

¢ In k-means we assigned each point to a single cluster, also called as
hard assignment (point 10 goes to cluster 2)

¢ In expectation maximization (EM) we will will use soft assignment
(point 10 goes half to cluster 2 and half to cluster 5)

¢ Lets define a random variable z, = [z1, z2, ..., Zk] to denote the
assignment vector for the nth point

» Hard assignment: only one of zx is 1, the rest are O
» Soft assignment: zx is positive and sum to 1
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GMM: parameter estimation

¢ Formally z« is the probability that the nt point goes to cluster k

“nk — p(yn — k‘Xn)
P(yn — kaxn)
P(Xn)

X P(yn — k)P(Xn|yn) — HkN(Xn§,Uka O-l%)

¢ Given a set of parameters (B, uk,0x?), Znk IS €asy to compute

¢ Given z,k, we can update the parameters (Bx,Jk Ok?) as:
1

0, = — 20 1. fraction of examples
N Zn: " with label k
L) = Z’n “n,kXn mean of all the fractional
> Znk examples with label k

B 2
Xn — pi| variance of all the fractional
> Znk examples with label k
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GMM: example

+ We have replaced the indicator variable [yn = K] with p(yn=k) which is
the expectation of [yn=k]. This is our guess of the labels.

¢ Just like k-means the EM is susceptible to local minima.
¢ Clustering example:

Clusters Clusters
15

K-means GMM

104

0 S 10 15 10 5 0 S 10 15

http://nbviewer.ipython.org/github/NICTA/MLSS/tree/master/clustering/
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http://nbviewer.ipython.org/github/NICTA/MLSS/tree/master/clustering/

The EM framework

+ We have data with observations x, and hidden variables yn, and would
like to estimate parameters 6

¢ The likelihood of the data and hidden variables:

— Hp(Xna yn‘e)

+ Only x» are known so we can compute the data likelihood by
marginalizing out the yn:

p(X|0) =1[> pxn,ynlt)

n Yn

¢ Parameter estimation by maximizing log-likelihood:

OmL < arg mg'»XZI;IOg (;P(Xm yne))

hard to maximize since the sum is inside the log
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Jensen’s inequality

+ Given a concave function f and a set of weights Aiz0and >. A. =1
¢ Jensen’s inequality states that f(>. A, x)) = 2. A f(x))
¢ This is a direct consequence of concavity

» flax + by) >af(x) + bfly)whena>0,b>0,a+b =1
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The EM framework

¢ Construct a lower bound the log-likelihood using Jensen’s inequality

L(X]0) = E :lOg (E P(Xn, Ynl|0) )
{ X
X’I’L? n
- E log (g q(Yn) y) ) Jensen’s inequality

> >I>Iq<yn>log( (X”’yn’e))ﬂ '

q(Yn)

=3 >‘ q(Yn) log p(xn, yn|0) — q(yn) log q(yn)]

s |

¢ Maximize the lower bound: iIndependent of 6

0 < arg max >: >: q(yn) log p(Xn, Yn|0)

n Yn
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Lower bound illustrated

¢ Maximizing the lower bound increases the value of the original
function if the lower bound touches the function at the current value

L(X]0)

X |0 41)

L(X]6;)

0; O0i11
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An optimal lower bound

+ Any choice of the probability distribution g(y») is valid as long as the
lower bound touches the function at the current estimate of 6

L(X]0;) = L(X]|0;)

+ We can the pick the optimal q(y») by maximizing the lower bouna

argmaxz q(yn) 10g p(Xn, Yn|0) — q(yn) log q(yy)]

o This gives us q(yn) — p(yn|xXn, 0)
» Proof: use Lagrangian multipliers with “sum to one” constraint

¢ This is the distributions of the hidden variables conditioned on the
data and the current estimate of the parameters

» This is exactly what we computed in the GMM example
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The EM algorithm

+ We have data with observations x» and hidden variables yn, and would
like to estimate parameters 6 of the distribution p(x | 6)

¢ EM algorithm
» Initialize the parameters 6 randomly
» lterate between the following two steps:
= E step: Compute probability distribution over the hidden variables

q(Yn) < P(Yn|Xn,0)
= M step: Maximize the lower bound

0 < argmax y » q(yn)logp(xn, ynl0)

n Yn

¢ EM algorithm is a great candidate when M-step can done easily but
p(x | B) cannot be easily optimized over 6

» For e.g. for GMMs it was easy to compute means and variances
given the memberships
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Naive Bayes: revisited

+ Consider the binary prediction problem
¢ Let the data be distributed according to a probability distribution:

pe(yax) — pe(y7$1,1‘27 .. 733D)

¢ We can simplify this using the chain rule of probability:

po(y,x) = po(y)pe(z1|y)po(z2|1,y) . . . Po(TD|T1, T2y ..., TD—1,Y)
D

— p@(y) Hpe(xd‘xlax27 RN 7$d—1ay)
d=1

+ Naive Bayes assumption:

po(zalza,y) = po(zaly),Vd # d

¢ E.g., The words “free” and “money” are independent given spam
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Naive Bayes: a simple case

o Case: binary labels and binary features
po(y) = Bernoulli(fp)

po(z4ly = 1) = Bernoulli(f)) 1+2D parameters
po(Tqly = —1) = Bernoulli(6)
¢ Probability of the data:
po(y,x) = Hpe (zaly)

D
X H 9;[“:1’?’:_1](1 — «9;)[“:0’y:_” // label -1
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Naive Bayes: parameter estimation

+ Given data we can estimate the parameters by maximizing data
likelihood

¢ The maximum likelihood estimates are:

é Zn [yn — ‘|‘1] // fraction of the data with label as +1
O JR—
N
é"" — Z”[de’n — 1’ Yn — _I_l] // fraction of the instances with 1 among +1
6’A_ — Z”[Id’n = Liyn = _1] // fraction of the instances with 1 among -1
g =

Zn[yn — _1]
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Naive Bayes: EM

+ Now suppose you don’t have labels yn
¢ Initialize the parameters 6 randomly
¢ E step: compute the distribution over the hidden variables g(yn)

D
A(yn = 1) = plyn = +1xn.0) o 65 [ 6,771 — o) Fren=0
d=1
+ M step: estimate 6 given the guesses

0y = Z’n q(Yn = 1) // fraction of the data with label as +1
N
— 1 — 1
0 = 2on i Ja(yn ) // fraction of the instances with 1 among +1
> 4(yn = 1)
0= — Zn[xd,n — ]q(yn — _1) // fraction of the instances with 1 among -1
d ~— 2 _
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Summary

¢ Expectation maximization

» A general technique to estimate parameters of probabilistic models
when some observations are hidden

» EM iterates between estimating the hidden variables and
optimizing parameters given the hidden variables

» EM can be seen as a maximization of the lower bound of the data

log-likelihood — we used Jensen's inequality to switch the log-sum
to sum-log

¢ EM can be used for learning:

mixtures of distributions for clustering, e.g. GMM

» parameters for hidden Markov models (next lecture)
» topic models in NLP

probabilistic PCA

v

v

CMPSCI 689 Subhransu Maji (UMASS) 18/19



Slides credit

¢ Some of the slides are based on CIML book by Hal Daume Il

¢ The figure for the EM lower bound is based on https://
cxwangyi.wordpress.com/2008/11/

¢ Clustering k-means vs GMM is from http://nbviewer.ipython.org/
github/NICTA/MLSS/tree/master/clustering/
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