Lecture 4: Total Probability Theorem and Bayes’ Rule
Total Probability Theorem

• Let A_1, A_2, \ldots, A_n form a partition of Ω and $P(A_i) > 0$
• Then, for any event B, we have

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \cdots + P(A_n \cap B)$$
$$= P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \cdots + P(A_n)P(B|A_n).$$

• This can be graphically explained as...
Total Probability Theorem

In a certain assembly plant, three machines, B_1, B_2, and B_3, make 30%, 45%, and 25% of the products, respectively. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

Answer is 0.0245.
Bayes’ Rule

Let A_1, A_2, \ldots, A_n partition Ω and $P(A_i) > 0$. For any B such that $P(B) > 0$,

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)}$$

$$= \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \cdots + P(A_n)P(B|A_n)}$$
Example: Taking the Bus

Every morning you leave your house and take the first bus that goes to the university. There’s a 25% chance that the first bus that comes will be a red bus and a 75% chance it will be a blue. If you take the red bus, you get to class late 20% of the time. If you take the blue bus, you get to class late 55% of the time. What’s the probability that you get to class late?

- **Question:** What events are specified in the problem?
- **Answer:** $B_{red}=$“red bus is first”, $B_{blue}=$“blue bus is first”, $L=$“get to class late”

- **Question:** What probabilities are specified in the problem?
- **Answer:** $P(B_{red}) = 0.25$, $P(B_{blue}) = 0.75$, $P(L|B_{red}) = 0.2$, $P(L|B_{blue}) = 0.55$.

- Need to compute $P(L)$: Since B_{blue} and B_{red} partition Ω:

\[
P(L) = P(L|B_{blue})P(B_{blue}) + P(L|B_{red})P(B_{red}) = 0.4625
\]
Example: Taking the Bus 2

Suppose the lecturer observes that you are late. What’s the probability you caught the blue bus?
As before,
\[P(B_{red}) = 0.25 , \quad P(B_{blue}) = 0.75 \]
\[P(L|B_{red}) = 0.2 , \quad P(L|B_{blue}) = 0.55 . \]

• Need to compute \(P(B_{blue}|L) \):
\[
P(B_{blue}|L) = \frac{P(B_{blue} \cap L)}{P(L)} = \frac{P(L|B_{blue})P(B_{blue})}{P(L)} = 0.891891 \ldots
\]

• First question uses the Total Probability Theorem and the question uses the Bayes’ Rule.
Example: Medical Testing and Diagnosis

Suppose there is a deadly disease that affects 1 in 10,000 people. There is a lab test that can correctly identify positive cases 99% of the time and correctly identify negative cases 95% of the time. If you apply the test to a randomly selected individual, what is the probability that they will test positive?

- **Events:** D = “Have the disease” and T = “Test positive”.
- **Relationships:** D and D^C partition Ω.
- **Probabilities:** $P(D) = 0.0001$, $P(T|D) = 0.99$, $P(T^C|D^C) = 0.95$.
- **Question:** What is $P(T)$?
- **Answer:**

$$P(T) = P(T|D)P(D) + P(T|D^C)P(D^C)$$
$$= 0.99 \cdot 0.0001 + 0.05 \cdot 0.9999 = 0.0501 .$$
Suppose there is a deadly disease that affects 1 in 10,000 people. There is a lab test that can correctly identify positive cases 99% of the time and correctly identify negative cases 95% of the time. If a person’s test result is positive, what is the probability that he/she has the disease?

- Events: D = “Have the disease” and T = “Test positive”.
- Relationships: D and D^C partition Ω.
- Probabilities: $P(D) = 0.0001$, $P(T|D) = 0.99$, $P(T^C|D^C) = 0.95$.
- Question: What is $P(D|T)$?

$$P(D|T) = \frac{P(T|D)P(D)}{P(T)}$$

$$= \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D^C)P(D^C)}$$

$$= \frac{0.99 \cdot 0.0001}{0.99 \cdot 0.0001 + 0.05 \cdot 0.9999} = \frac{0.000099}{0.0501} = 0.001976$$