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Lecture 30: Bayesian Networks



Bayesian Networks

• We use a Directed Acyclic Graph (DAG) to encode conditional
independence assumptions.
I Nodes Xi in the graph G represent random variables.
I A directed edge Xj → Xi means Xi directly depends on Xj (not

causation!).
I We also define that Xj is a “parent” of Xi .
I The set of variables that are parents of Xi is denoted Pai .
I Xi is independent of all its nondescendants given Pai .
I The factor associated with variable Xi is P(Xi |Pai ).
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Bayesian Networks vs. Markov Chains

• In Transition Probability Graphs of Markov Chains, nodes
represent all possible states, and arrows represents the
probability of transition from one state to another (with
numbers written on it).
• In Bayesian Networks, nodes represent all possible random

variables, and arrows represents dependencies between the
random variables (no numbers associated with it).
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The Bayesian Network Theorem

• Definition: A joint PMF P(X1, ..., Xd ) is a Bayesian network
with respect to a directed acyclic graph G with parent sets
{Pa1, ..., Pad} if and only if:

P(X1, ..., Xd ) =
d∏

i=1
P(Xi |Pai )

• In other words, to be a valid Bayesian network for a given
graph G , the joint PMF must factorize according to G .
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3 Cases of Conditional Independence to Remember

X1 X2X3

Pa1 = {}, Pa3 = {X1}, Pa2 = {X3}

P(X1, X2, X3) = P(X1)P(X3|X1)P(X2|X3)
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3 Cases of Conditional Independence to Remember

X1

X2 X3

Pa1 = {}, Pa3 = {X1}, Pa2 = {X1}
P(X1, X2, X3) = P(X1)P(X3|X1)P(X2|X1) (1)

• Note that X2 and X3 are conditionally independent given X1:

P(X2, X3|X1) = P(X2|X1) · P(X3|X1)

Proof: divide both sides in (1) by P(X1)
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3 Cases of Conditional Independence to Remember

X1

X2

X3

Pa1 = {}, Pa3 = {}, Pa2 = {X1, X3}
P(X1, X2, X3) = P(X1)P(X3)P(X2|X1, X3) (2)

• Note that X1 is not independent of X3 given X2:
P(X1, X3|X2) 6= P(X1|X2) · P(X3|X2)

Proof: divide both sides in (2) by P(X2):

P(X1, X3|X2) = P(X1)P(X3)P(X2|X1, X3)
P(X2) 6= P(X1|X2)·P(X3|X2)
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If All Nodes Are Independent

X1 X2 X3

Pa1 = {}, Pa3 = {}, Pa2 = {}

P(X1, X2, X3) = P(X1)P(X3)P(X2)
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The Alarm Network: Random Variable

• You live in quiet neighborhood in the suburbs of LA. There
are two reasons the alarm system in your house will go off:
your house is broken into or there is an earthquake. If your
alarm goes off you might get a call from the police
department. You might also get a call from your neighbor.

P(B, E , A, PD, N) = P(B)P(E )P(A|B, E )P(PD|A)P(N|A) 10 / 21



The Alarm Network: Marginal Query

• Question: What is the probability that there was a break-in,
but no earthquake, the police call, but your neighbor does not
call?

P(B = 1, E = 0, PD = 1, N = 0)

=
∑

A={0,1}

P(B = 1, E = 0, PD = 1, N = 0, A)

= P(B = 1, E = 0, PD = 1, N = 0, A = 0)
+P(B = 1, E = 0, PD = 1, N = 0, A = 1)
= P(B = 1)P(E = 0)P(A = 1|B = 1, E = 0)P(PD = 1|A = 1)P(N = 0|A = 1)
+P(B = 1)P(E = 0)P(A = 0|B = 1, E = 0)P(PD = 1|A = 0)P(N = 0|A = 0)

= 0.001 · (1− 0.002) · 0.94 · 0.9 · (1− 0.75)
+0.001 · (1− 0.002) · (1− 0.94) · 0.005 · (1− 0.1) = 0.00021 . . .
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The Alarm Network: Marginal Query

• Question: What is the probability that the alarm will be on?

P(A = 1)

=
∑

B

∑
E

∑
PD

∑
N

P(A = 1, B, E , PD, N)

=
∑

B

∑
E

∑
PD

∑
N

P(B)P(E)P(A = 1|B, E)P(PD|A = 1)P(N|A = 1)

= P(B = 0)P(E = 0)P(A = 1|B, E = 0)P(PD = 0|A = 1)P(N = 0|A = 1)
+P(B = 0)P(E = 0)P(A = 1|B, E = 0)P(PD = 0|A = 1)P(N = 1|A = 1)
· · ·
+P(B = 1)P(E = 1)P(A = 1|B, E = 1)P(PD = 1|A = 1)P(N = 1|A = 1)
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The Alarm Network: Marginal Query

• We can compute the above using a simple algorithm:
Z = 0;
for B = 0 to 1 do

for E = 0 to 1 do
for PD = 0 to 1 do

for N = 0 to 1 do
Z = Z+
P(B)P(E )P(A = 1|B, E )P(PD|A = 1)P(N|A = 1);

end
end

end
end

• What would be the potential problem with this?
I Computational complexity explodes as # of variables increases
I The multiplication of small number approaches to 0 as # of

variables increases

13 / 21



The Alarm Network: Marginal Query

• We can optimize the computation as the following

P(A = 1)

=
∑

B

∑
E

∑
PD

∑
N

P(B)P(E)P(A = 1|B, E)P(PD|A = 1)P(N|A = 1)

=
∑

B

∑
E

P(B)P(E)P(A = 1|B, E)
∑
PD

P(PD|A = 1)
∑

N

P(N|A = 1)

=
∑

B

∑
E

P(B)P(E)P(A = 1|B, E)
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The Alarm Network: Conditional Query

• Question: What is the probability that the alarm went off given that there was
a break-in, but no earthquake, the police call, but your neighbor does not call?

P(A = 1|B = 1, E = 0, PD = 1, N = 0)

=
P(B = 1, E = 0, A = 1, PD = 1, N = 0)

P(B = 1, E = 0, PD = 1, N = 0)

=
P(B = 1, E = 0, A = 1, PD = 1, N = 0)∑1
a=0 P(B = 1, E = 0, A = a, PD = 1, N = 0)

=
P(B = 1)P(E = 0)P(A = 1|B = 1, E = 0)P(PD = 1|A = 1)P(N = 0|A = 1)∑1
a=0 P(B = 1)P(E = 0)P(A = a|B = 1, E = 0)P(PD = 1|A = a)P(N = 0|A = a)
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Answering Probabilistic Queries

• Joint Query: To compute the probability of an assignment to
all of the variables we simply express the joint probability as a
product over the individual factors. We then look up the
correct entries in the factor tables and multiply them together.
• Marginal Query: To compute the probability of an observed

subset of the variables in the Bayesian network, we sum the
joint probability of all the variables over the possible
configurations of the unobserved variables.
• Conditional Query: To compute the probability of one

subset of the variables given another subset, we first apply the
conditional probability formula and then compute the ratio of
the resulting marginal probabilities.

16 / 21



Estimating Bayesian Networks from Data

• Just as with simpler models like the biased coin, we can
estimate the unknown model parameters from data.

• If we have data consisting of n observations of all of the
variables in the network, we can easily estimate the entries of
each conditional probability table.
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Estimating Bayesian Networks: Counting

• No Parents: For a variable X with no parents, the estimate
of P(X = x) is just the number of times that the variable X
takes the value x in the data, divided by the total number of
data cases n.
• Some Parents: For a variable X with parents Y1, ..., Yp, the

estimate of P(X = x |Y1 = y1, ..., Yp = yp) is just the number
of times that the variable X takes the value x when the
parent variables Y1, ..., Yp take the values y1, ..., yp, divided by
the total number of times that the parent variables take the
values y1, ..., yp.
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Computing the Factor Tables from Observations

• Suppose we have a sample of data as shown below. Each row i is a joint
configuration of all of the random variables in the network.

E B A PD N
1 0 1 1 1
0 0 0 0 1
0 0 1 1 0
0 1 1 1 0
0 0 0 0 0

• In the alarm network, consider the factor P(E). We need to estimate P(E = 0)
and P(E = 1).

• Given our data sample, we get the answers P(E = 0) = 4/5 and
P(E = 1) = 1/5.
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Computing the Factor Tables from Observations

• In the alarm network, consider the factor P(N|A). We need to
estimate P(N = 0|A = 0),P(N = 1|A = 0), P(N = 0|A = 1),
P(N = 1|A = 1). How can we do this?

E B A PD N
1 0 1 1 1
0 0 0 0 1
0 0 1 1 0
0 1 1 1 0
0 0 0 0 0

• P(N = 0|A = 0) = 1
2 , P(N = 1|A = 0) = 1

2
• P(N = 0|A = 1) = 2

3 , P(N = 1|A = 1) = 1
3
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Learning the structure of a Bayesian Network from
data

• What if you have a dataset, but you do not know the
dependencies that exist between the random variables?
• In other words, you do not know what is the graph of your

Bayesian network.
• You can estimate the structure of the graph from data!
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