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Lecture 29: Bayesian Networks



Review

e In practice, it is much common to encounter real-world problems
that involve measuring multiple random variables Xj, ..., X,, for each
repetition of the experiment, with RVs that may have complex
relationships among themselves.

e Chain Rule for n random variables
P(Xna e 7X1) = 'D(Xn‘Xn—la e 7X1)P(Xn—17 e 7X1)
e Marginal probabilities for multiple discrete random variables

Xi, -+ X, with joint PMF, denoted as P(Xy,--- X,), could be
computed as

Xl—Xl Z ZP X1—X1,X2—X2, 7X,,:Xn)
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The Curse of Dimensionality

e Suppose we have an experiment where we obtain the values of
d random variables X, ..., Xy, where each variable has binary
outcomes (for simplicity).

e Question: How many numbers does it take to write down a
joint distribution for them?

e Answer: The number of d-bit sequences is 2¢. Because we
know that the probabilities have to add up to 1, we need to
write down 29 — 1 numbers to specify the full joint PMF on d
binary variables.
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How Fast is Exponential Growth?

e 29 — 1 grows exponentially as d increases linearly:

|d [29-1
1 [1
10 | 1023

100 | 1,267,650,600,228,229,401,496,703,205,375

e Storing the full joint PMF for 100 binary variables would take
about 1030 real numbers or about 10'8 terabytes of storage!

e Joint PMFs grow in size so rapidly, we have no hope
whatsoever of storing them explicitly for problems with more
than about 30 (binary) random variables.
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Factorizing Joint Distributions

To address this, we start by factorizing the joint distribution,
i.e., re-writing the joint distribution as a product of
conditional PMFs over single variables (called factors).

If we know some conditional independency between the
variables, we can save some space.

Keeping track of all the conditional independence assumptions
gets tedious when there are a lot of variables.
To get around this problem, we use “Bayesian Networks” to
express the conditional independence structure of these
models.

» A Bayesian network uses conditional independence

assumptions to more compactly represent a joint PMF of many
random variables.
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Bayesian Networks

e We use a Directed Acyclic Graph (DAG) to encode conditional
independence assumptions.
» Nodes X; in the graph G represent random variables.
> A directed edge X; — X; means X; directly depends on X; (not
causation!).
» We also define that X is a “parent” of X;.
» The set of variables that are parents of X; is denoted Pa;.
» X; is independent of all its nondescendants given Pa;.
» The factor associated with variable X; is P(Xi|Pa;).
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Example: Bayesian Network

Toothache: boolean variable indicating whether the patient has a
toothache

Cavity: boolean variable indicating whether the patient has a cavity
Catch/Find: whether the dentist's probe catches in the cavity

We had
P(Find| Toothache, Cavity) = P(Find|Cavity)

P(Toothache|Find, Cavity) = P(Toothache|Cavity)

This can be graphically represented as

Tooth-
ache
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Example: Bayesian Network

e Given a BayesNet (DAG),

Tooth-
ache

P(C,T,F) = P(F|T,C)P(T|C)P(C)
= P(FIC)P(TIC)P(C)

e Thus,

P(C,T,F) = P(T|F,C)P(F|C)P(C)
= P(TIC)P(FIC)P(C)
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Bayesian Networks vs. Markov Chains

Do not confuse the Bayesian Networks and the Transition
Probability Graphs of Markov Chains.

These two graphs look similar (both have circles with arrows)
but represent two vastly different entities.

In Transition Probability Graphs, nodes represent all possible
states, and arrows represents the probability of transition
from one state to another (with numbers written on it).

In Bayesian Networks, nodes represent all possible random
variables, and arrows represents dependencies between the
random variables (no numbers associated with it).
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The Bayesian Network Theorem

e Definition: A joint PMF P(Xi,..., Xy) is a Bayesian network
with respect to a directed acyclic graph G with parent sets
{Pay, ..., Pag} if and only if:

d
P(X1,...,Xq) = [ [ P(Xi|Pa;)
i=1
e In other words, to be a valid Bayesian network for a given
graph G, the joint PMF must factorize according to G.
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3 Cases of Conditional Independence to Remember

Pal = {}, Pa3 = {Xl}, P32 = {X3}
P(Xi=a1,Xo =a, X3 = a3) =

P(X1 = al)P(X3 = a3]X1 = al)P(X2 = 32’X3 = 83)

12/21



3 Cases of Conditional Independence to Remember

Pal = {}, Pa3 = {Xl}, Paz = {Xl}
P(X1 = al,Xg = 82,X3 = 33) =
P(Xl = al)P(X3 = 33|X1 = al)P(XQ = 82|X1 = al)

e Note that Xy and X3 are conditionally independent given Xj.
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3 Cases of Conditional Independence to Remember

Pal = {}, Pa3 = {}, P32 = {Xl,X3}
P(X1, X2, X3) = P(X1)P(X3)P(Xz2| X1, X3)

e Note that Xj is not independent of X3 given X>.
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If All Nodes Are Independent

QEON®

Pal = {}, Pa3 = {}, P32 = {}
P(X1, X2, X3) = P(X1)P(X3)P(X2)
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The Alarm Network: Random Variable

Consider the following situation:

You live in quiet neighborhood in the suburbs of LA. There
are two reasons the alarm system in your house will go off:
your house is broken into or there is an earthquake. If your
alarm goes off you might get a call from the police

department. You might also get a call from your neighbor.

Question What random variables can we use to describe this
problem?

Answer: Break-in (B), Earthquake (E), Alarm (A), Police
Department calls (PD), Neighbor calls (N).
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The Alarm Network: Factorization

e Question What direct dependencies might exist between the
random variables B, E, A, PD, N?

e Question: What is the factorization implied by the graph?
e P(B,E,A,PD,N)= P(B)P(E)P(A|B, E)P(PD|A)P(N|A)
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From Graphs to Factorizations and Back

e If we have a valid graph, we can infer the parent sets and the
factors.

e If we have a valid set of factors, we can infer the parent sets
and the graph.

e If we have a "text” that describes a problem, we can infer a
graph and set of factors.
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Example: Factorization to Graph

P (X1, X2, X3) = P(X1)P(X3]|X1)P(X2| X1)
Pal = {}, Pa3 = {Xl}, P32 = {Xl}

(X
&) ®
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The Alarm Network: Factor Tables

P(B,E,A,PD,N) = P(B)P(E)P(A|B, E)P(PD|A)P(N|A)

P(B=1)
0.001

P(E=1)
0.002

0.950

0.940

OO | |F

Ol | O|fFr

0.290

0.001

A P(PD=1|A)

1
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[

0

0.005

o

0.100
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The Alarm Network: Joint Query

e Question: What is the probability that there is a break-in,
but no earthquake, the alarm goes off, the police call, but
your neighbor does not call?

P(B=1E=0,A=1,PD=1,N=0)
= P(B=1)P(E=0)P(A=1|B=1,E =0)P(PD=1|A=1)P(N =0|A = 1)
=0.001 - (1 —0.002)-0.94-0.9 - (1 — 0.75) = 0.00021...

P(B=1)
0.001 0.002
B E P(A=1|BE) e G
11 0950
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