COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan

University of Massachusetts at Amherst

Spring 2019

Lecture 29: Bayesian Networks

Review

- In practice, it is much common to encounter real-world problems that involve measuring multiple random variables $X_1, ..., X_n$ for each repetition of the experiment, with RVs that may have complex relationships among themselves.
- Chain Rule for n random variables

$$P(X_n, \dots, X_1) = P(X_n | X_{n-1}, \dots, X_1) P(X_{n-1}, \dots, X_1)$$

• Marginal probabilities for multiple discrete random variables $X_1, \dots X_n$ with joint PMF, denoted as $P(X_1, \dots X_n)$, could be computed as

$$P(X_1 = x_1) = \sum_{x_n} \cdots \sum_{x_n} P(X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n)$$

The Curse of Dimensionality

- Suppose we have an experiment where we obtain the values of d random variables $X_1, ..., X_d$, where each variable has binary outcomes (for simplicity).
- Question: How many numbers does it take to write down a joint distribution for them?
- **Answer:** The number of d-bit sequences is 2^d . Because we know that the probabilities have to add up to 1, we need to write down $2^d 1$ numbers to specify the full joint PMF on d binary variables.

How Fast is Exponential Growth?

• $2^d - 1$ grows **exponentially** as d increases **linearly**:

d	$2^{d}-1$
1	1
10	1023
100	1,267,650,600,228,229,401,496,703,205,375
:	i

- Storing the full joint PMF for 100 binary variables would take about 10^{30} real numbers or about 10^{18} **terabytes** of storage!
- Joint PMFs grow in size so rapidly, we have no hope whatsoever of storing them explicitly for problems with more than about 30 (binary) random variables.

Factorizing Joint Distributions

- To address this, we start by factorizing the joint distribution, i.e., re-writing the joint distribution as a product of conditional PMFs over single variables (called factors).
- If we know some conditional independency between the variables, we can save some space.
- Keeping track of all the conditional independence assumptions gets tedious when there are a lot of variables.
- To get around this problem, we use "Bayesian Networks" to express the conditional independence structure of these models.
 - A Bayesian network uses conditional independence assumptions to more compactly represent a joint PMF of many random variables.

Bayesian Networks

- We use a Directed Acyclic Graph (DAG) to encode conditional independence assumptions.
 - Nodes X_i in the graph G represent random variables.
 - A directed edge $X_j \to X_i$ means X_i directly depends on X_j (not causation!).
 - ▶ We also define that X_i is a "parent" of X_i .
 - ▶ The set of variables that are parents of X_i is denoted Pa_i .
 - \triangleright X_i is independent of all its nondescendants given Pa_i .
 - ▶ The factor associated with variable X_i is $P(X_i|Pa_i)$.

Example: Bayesian Network

- Toothache: boolean variable indicating whether the patient has a toothache
- Cavity: boolean variable indicating whether the patient has a cavity
- Catch/Find: whether the dentist's probe catches in the cavity
- We had

$$P(Find|Toothache, Cavity) = P(Find|Cavity)$$

 $P(Toothache|Find, Cavity) = P(Toothache|Cavity)$

• This can be graphically represented as

Example: Bayesian Network

Given a BayesNet (DAG),

Thus,

$$P(C, T, F) = P(F|T, C)P(T|C)P(C)$$
$$= P(F|C)P(T|C)P(C)$$

$$P(C, T, F) = P(T|F, C)P(F|C)P(C)$$
$$= P(T|C)P(F|C)P(C)$$

Bayesian Networks vs. Markov Chains

- Do not confuse the *Bayesian Networks* and the *Transition Probability Graphs of Markov Chains*.
- These two graphs look similar (both have circles with arrows) but represent two vastly different entities.
- In Transition Probability Graphs, nodes represent all possible states, and arrows represents the probability of transition from one state to another (with numbers written on it).
- In Bayesian Networks, nodes represent all possible random variables, and arrows represents dependencies between the random variables (no numbers associated with it).

The Bayesian Network Theorem

• **Definition:** A joint PMF $P(X_1,...,X_d)$ is a Bayesian network with respect to a directed acyclic graph G with parent sets $\{Pa_1,...,Pa_d\}$ if and only if:

$$P(X_1, ..., X_d) = \prod_{i=1}^d P(X_i | Pa_i)$$

• In other words, to be a valid Bayesian network for a given graph *G*, the joint PMF must factorize according to *G*.

3 Cases of Conditional Independence to Remember

$$Pa_1 = \{\}, Pa_3 = \{X_1\}, Pa_2 = \{X_3\}$$

$$P(X_1 = a_1, X_2 = a_2, X_3 = a_3) =$$

$$P(X_1 = a_1)P(X_3 = a_3|X_1 = a_1)P(X_2 = a_2|X_3 = a_3)$$

3 Cases of Conditional Independence to Remember

$$Pa_1 = \{\}, Pa_3 = \{X_1\}, Pa_2 = \{X_1\}$$

$$P(X_1 = a_1, X_2 = a_2, X_3 = a_3) =$$

$$P(X_1 = a_1)P(X_3 = a_3|X_1 = a_1)P(X_2 = a_2|X_1 = a_1)$$

• Note that X_2 and X_3 are conditionally independent given X_1 .

3 Cases of Conditional Independence to Remember

$$Pa_1 = \{\}, Pa_3 = \{\}, Pa_2 = \{X_1, X_3\}$$

 $P(X_1, X_2, X_3) = P(X_1)P(X_3)P(X_2|X_1, X_3)$

• Note that X_1 is not independent of X_3 given X_2 .

If All Nodes Are Independent

$$Pa_1 = \{\}, Pa_3 = \{\}, Pa_2 = \{\}$$

 $P(X_1, X_2, X_3) = P(X_1)P(X_3)P(X_2)$

The Alarm Network: Random Variable

- Consider the following situation:
- You live in quiet neighborhood in the suburbs of LA. There
 are two reasons the alarm system in your house will go off:
 your house is broken into or there is an earthquake. If your
 alarm goes off you might get a call from the police
 department. You might also get a call from your neighbor.
- Question What random variables can we use to describe this problem?
- Answer: Break-in (B), Earthquake (E), Alarm (A), Police Department calls (PD), Neighbor calls (N).

The Alarm Network: Factorization

 Question What direct dependencies might exist between the random variables B, E, A, PD, N?

- Question: What is the factorization implied by the graph?
- P(B, E, A, PD, N) = P(B)P(E)P(A|B, E)P(PD|A)P(N|A)

From Graphs to Factorizations and Back

- If we have a valid graph, we can infer the parent sets and the factors.
- If we have a valid set of factors, we can infer the parent sets and the graph.
- If we have a "text" that describes a problem, we can infer a graph and set of factors.

Example: Factorization to Graph

$$P(X_1, X_2, X_3) = P(X_1)P(X_3|X_1)P(X_2|X_1)$$

 $Pa_1 = \{\}, Pa_3 = \{X_1\}, Pa_2 = \{X_1\}$

The Alarm Network: Factor Tables

$$P(B, E, A, PD, N) = P(B)P(E)P(A|B, E)P(PD|A)P(N|A)$$

The Alarm Network: Joint Query

• Question: What is the probability that there is a break-in, but no earthquake, the alarm goes off, the police call, but your neighbor does not call?

$$P(B = 1, E = 0, A = 1, PD = 1, N = 0)$$

= $P(B = 1)P(E = 0)P(A = 1|B = 1, E = 0)P(PD = 1|A = 1)P(N = 0|A = 1)$
= $0.001 \cdot (1 - 0.002) \cdot 0.94 \cdot 0.9 \cdot (1 - 0.75) = 0.00021...$

