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Lecture 28: Bayesian Networks



Review

• Chain Rule for n random variables

P(Xn, · · · , X1) = P(Xn|Xn−1, · · · , X1)P(Xn−1, · · · , X1)

• Marginal probabilities for multiple discrete random variables
X1, · · ·Xn with joint PMF, denoted as P(X1, · · ·Xn), could be
computed as

P(X1 = x1) =
∑

x2

· · ·
∑
xn

P(X1 = x1, X2 = x2, · · · , Xn = xn)

• In practice, it is much common to encounter real-world problems
that involve measuring multiple random variables X1, ..., Xn for each
repetition of the experiment.

• These random variables X1, ..., Xn may have complex relationships
among themselves.
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The Curse of Dimensionality

• Suppose we have an experiment where we obtain the values of
d random variables X1, ..., Xd , where each variable has binary
outcomes (for simplicity).
• Question: How many numbers does it take to write down a

joint distribution for them?
• Answer: We need to define a probability for each d-bit

sequence:
P(X1 = 0, X2 = 0, ..., Xd = 0)
P(X1 = 1, X2 = 0, ..., Xd = 0)

...
P(X1 = 1, X2 = 1, ..., Xd = 1)

• The number of d-bit sequences is 2d . Because we know that
the probabilities have to add up to 1, we need to write down
2d − 1 numbers to specify the full joint PMF on d binary
variables. 4 / 13



How Fast is Exponential Growth?

• 2d − 1 grows exponentially as d increases linearly:

d 2d − 1
1 1
10 1023
100 1,267,650,600,228,229,401,496,703,205,375
...

...

• Storing the full joint PMF for 100 binary variables would take
about 1030 real numbers or about 1018 terabytes of storage!
• Joint PMFs grow in size so rapidly, we have no hope

whatsoever of storing them explicitly for problems with more
than about 30 (binary) random variables.
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Factorizing Joint Distributions

• To address this, we start by factorizing the joint distribution,
i.e., re-writing the joint distribution as a product of
conditional PMFs over single variables (called factors).
• If we know some conditional independency between the

variables, we can save some space.
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Conditional Independence: Simplification 2

• Suppose we instead only assume that:
I P(X2 = a2|X1 = a1, X3 = a3) = P(X2 = a2|X1 = a1) for all

a1, a2, a3.
• This gives the “conditional independence model”: X2 is

conditionally independent of X3 given X1

P(X1 = a1, X2 = a2, X3 = a3)
= P(X1 = a1)P(X3 = a3|X1 = a1)P(X2 = a2|X1 = a1, X3 = a3)
= P(X1 = a1)P(X3 = a3|X1 = a1)P(X2 = a2|X1 = a1)

• How many numbers do we need to store for three binary
random variables in this case?
1 + 2 + 2 = 5 (as opposed to 23 − 1 = 7 if we encoded the
full joint)
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Example

• Toothache: boolean variable indicating whether the patient has a
toothache caused by a cavity

• Cavity: boolean variable indicating whether the patient has a cavity
• Catch/Find: whether the dentist finds the cavity
• If the patient has a cavity, the probability that the dentist finds the

cavity doesn’t depend on whether he/she has a toothache

P(Find |Toothache, Cavity) = P(Find |Cavity)

Therefore, Find is conditionally independent of Toothache given
Cavity

• Likewise, Toothache is conditionally independent of Find given
Cavity

P(Toothache|Find , Cavity) = P(Toothache|Cavity)

• What is the space requirement to represent the Joint Distribution
P(Toothache, Find , Cavity)?
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Bayesian Networks

• Keeping track of all the conditional independence assumptions
gets tedious when there are a lot of variables.
I Consider the following situation: You live in a quiet

neighborhood in the suburbs of LA. There are two reasons the
alarm system in your house will go off: your house is broken
into or there is an earthquake. If your alarm is on, you might
get a call from the police department. You might also get a
call from your neighbor.

• To get around this problem, we use “Bayesian Networks” to
express the conditional independence structure of these
models.
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Bayesian Networks

• A Bayesian network uses conditional independence
assumptions to more compactly represent a joint PMF of
many random variables.
• We use a Directed Acyclic Graph (DAG) to encode conditional

independence assumptions.
I Nodes Xi in the graph G represent random variables.
I A directed edge Xj → Xi means Xi directly depends on Xj (not

causation!).
I We also define that Xj is a “parent” of Xi .
I The set of variables that are parents of Xi is denoted Pai .
I Xi is independent of all its nondescendants given Pai .
I The factor associated with variable Xi is P(Xi |Pai ).
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Example: Bayesian Network

• Toothache: boolean variable indicating whether the patient has a
toothache

• Cavity: boolean variable indicating whether the patient has a cavity
• Catch/Find: whether the dentist’s probe catches in the cavity
• We had

P(Find |Toothache, Cavity) = P(Find |Cavity)
P(Toothache|Find , Cavity) = P(Toothache|Cavity)

• This can be graphically represented as

Cavity

Tooth-
ache Catch
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Bayesian Networks vs. Markov Chains

• Do not confuse the Bayesian Networks and the Transition
Probability Graphs of Markov Chains.
• These two graphs look similar (both have circles with arrows)

but represent two vastly different entities.
• In Transition Probability Graphs, nodes represent all possible

states, and arrows represents the probability of transition
from one state to another (with numbers written on it).
• In Bayesian Networks, nodes represent all possible random

variables, and arrows represents dependencies between the
random variables (no numbers associated with it).
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Example: Bayesian Network

• Given a BayesNet (DAG),

Cavity

Tooth-
ache Catch

• Thus,

P(C , T , F ) = P(C |T , F )P(T |F )P(F )
= P(C |F )P(T |F )P(F )

P(C , T , F ) = P(T |C , F )P(C |F )P(F )
= P(T |F )P(C |F )P(F )
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