COMPSCI 240: Reasoning Under Uncertainty

Andrew Lan and Nic Herndon

University of Massachusetts at Amherst

Spring 2019

Lecture 28: Bayesian Networks

Review

• Chain Rule for *n* random variables

$$P(X_n,\cdots,X_1)=P(X_n|X_{n-1},\cdots,X_1)P(X_{n-1},\cdots,X_1)$$

Marginal probabilities for multiple discrete random variables X₁, ... X_n with joint PMF, denoted as P(X₁, ... X_n), could be computed as

$$P(X_1 = x_1) = \sum_{x_2} \cdots \sum_{x_n} P(X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n)$$

- In practice, it is much common to encounter real-world problems that involve measuring multiple random variables $X_1, ..., X_n$ for each repetition of the experiment.
- These random variables $X_1, ..., X_n$ may have complex relationships among themselves.

The Curse of Dimensionality

- Suppose we have an experiment where we obtain the values of *d* random variables *X*₁, ..., *X_d*, where each variable has binary outcomes (for simplicity).
- **Question:** How many **numbers** does it take to write down a joint distribution for them?
- **Answer:** We need to define a probability for each *d*-bit sequence:

$$P(X_1 = 0, X_2 = 0, ..., X_d = 0)$$

$$P(X_1 = 1, X_2 = 0, ..., X_d = 0)$$

$$\vdots$$

$$P(X_1 = 1, X_2 = 1, ..., X_d = 1)$$

• The number of d-bit sequences is 2^d . Because we know that the probabilities have to add up to 1, we need to write down $2^d - 1$ numbers to specify the full joint PMF on *d* binary variables.

How Fast is Exponential Growth?

• $2^d - 1$ grows exponentially as *d* increases linearly:

d	$2^{d} - 1$
1	1
10	1023
100	1,267,650,600,228,229,401,496,703,205,375
:	:

- Storing the full joint PMF for 100 binary variables would take about 10³⁰ real numbers or about 10¹⁸ terabytes of storage!
- Joint PMFs grow in size so rapidly, we have no hope whatsoever of storing them explicitly for problems with more than about 30 (binary) random variables.

Factorizing Joint Distributions

- To address this, we start by *factorizing the joint distribution*, i.e., re-writing the joint distribution as a product of conditional PMFs over single variables (called factors).
- If we know some conditional independency between the variables, we can save some space.

Conditional Independence: Simplification 2

• Suppose we instead only assume that:

 $P(X_2 = a_2 | X_1 = a_1, X_3 = a_3) = P(X_2 = a_2 | X_1 = a_1)$ for all $a_1, a_2, a_3.$

• This gives the "conditional independence model": X₂ is conditionally independent of X₃ given X₁

$$P(X_1 = a_1, X_2 = a_2, X_3 = a_3)$$

= $P(X_1 = a_1)P(X_3 = a_3|X_1 = a_1)P(X_2 = a_2|X_1 = a_1, X_3 = a_3)$
= $P(X_1 = a_1)P(X_3 = a_3|X_1 = a_1)P(X_2 = a_2|X_1 = a_1)$

• How many numbers do we need to store for three binary random variables in this case? 1+2+2=5 (as opposed to $2^3-1=7$ if we encoded the full joint)

Example

- Toothache: boolean variable indicating whether the patient has a toothache caused by a cavity
- Cavity: boolean variable indicating whether the patient has a cavity
- Catch/Find: whether the dentist finds the cavity
- If the patient has a cavity, the probability that the dentist finds the cavity doesn't depend on whether he/she has a toothache

P(Find | Toothache, Cavity) = P(Find | Cavity)

Therefore, Find is conditionally independent of Toothache given Cavity

• Likewise, Toothache is conditionally independent of Find given Cavity

P(Toothache|Find, Cavity) = P(Toothache|Cavity)

• What is the space requirement to represent the Joint Distribution *P*(*Toothache*, *Find*, *Cavity*)?

Bayesian Networks

- Keeping track of all the conditional independence assumptions gets tedious when there are a lot of variables.
 - Consider the following situation: You live in a quiet neighborhood in the suburbs of LA. There are two reasons the alarm system in your house will go off: your house is broken into or there is an earthquake. If your alarm is on, you might get a call from the police department. You might also get a call from your neighbor.
- To get around this problem, we use "Bayesian Networks" to express the conditional independence structure of these models.

Bayesian Networks

- A Bayesian network uses conditional independence assumptions to more compactly represent a joint PMF of many random variables.
- We use a Directed Acyclic Graph (DAG) to encode conditional independence assumptions.
 - Nodes X_i in the graph G represent random variables.
 - A directed edge X_j → X_i means X_i directly depends on X_j (not causation!).
 - We also define that X_j is a "parent" of X_i .
 - The set of variables that are parents of X_i is denoted Pa_i .
 - X_i is independent of all its nondescendants given Pa_i.
 - The factor associated with variable X_i is $P(X_i|Pa_i)$.

Example: Bayesian Network

- Toothache: boolean variable indicating whether the patient has a toothache
- Cavity: boolean variable indicating whether the patient has a cavity
- Catch/Find: whether the dentist's probe catches in the cavity
- We had

P(Find | Toothache, Cavity) = P(Find | Cavity)

P(Toothache|Find, Cavity) = P(Toothache|Cavity)

• This can be graphically represented as

Bayesian Networks vs. Markov Chains

- Do not confuse the *Bayesian Networks* and the *Transition Probability Graphs of Markov Chains*.
- These two graphs look similar (both have circles with arrows) but represent two vastly different entities.
- In Transition Probability Graphs, **nodes** represent all possible **states**, and **arrows** represents the **probability of transition** from one state to another (with numbers written on it).
- In Bayesian Networks, **nodes** represent all possible **random variables**, and **arrows** represents **dependencies** between the random variables (no numbers associated with it).

P(C, T, F) = P(T|C, F)P(C|F)P(F)= P(T|F)P(C|F)P(F)

P(C, T, F) = P(C|T, F)P(T|F)P(F)= P(C|F)P(T|F)P(F)

Thus,

• Given a BayesNet (DAG),

Example: Bayesian Network