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Lecture 27: Bayesian Networks



Outline of this Lecture

• Review of Chain Rule
• Review of Joint and Marginal Probabilities
• The Curse of Dimensionality and Factorization
• Definition of Bayesian Network (a Directed Acyclic Graph)
• Some examples of BayesNet
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Chain Rule

• Simplest form of the chain rule is

P(A, B) = P(B|A)P(A) = P(A|B)P(B)

• Chain rule for 3 variables

P(A, B, C) = P(C |A, B)P(A|B)P(B)
= P(C |A, B)P(B|A)P(A)
= P(B|A, C)P(A|C)P(C)
= P(B|A, C)P(C |A)P(A)
= P(A|B, C)P(B|C)P(C)
= P(A|B, C)P(C |B)P(B)

• This can be generalized as

P(Xn, · · · , X1) = P(Xn|Xn−1, · · · , X1)P(Xn−1, · · · , X1)
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Joint and Marginal Probabilities - Review

• For two discrete random variables X and Y , the joint PMF P(X , Y )
was defined as

P(X = x , Y = y) = P(X = x and Y = y) = P({X = x}∩{Y = y})

• Marginal probabilities could be computed as

P(X = x) =
∑

y
P(X = x , Y = y)

P(Y = y) =
∑

x
P(X = x , Y = y)

• For multiple discrete random variables X1, · · ·Xn whose joint PMF is
denoted as P(X1, · · ·Xn), marginal probabilities could be computed
as

P(X1 = x1) =
∑

x2

· · ·
∑
xn

P(X1 = x1, X2 = x2, · · · , Xn = xn)
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Marginal Probability - Review

P(X,Y)
X\Y 1 2 3 4

1 0.1 0.1 0 0.2
2 0.05 0.05 0.1 0
3 0 0.1 0.2 0.1

X P(X)
1 0.4
2 0.2
3 0.4
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Many Random Variables

• In practice, it is much common to encounter real-world
problems that involve measuring multiple random variables
X1, ..., Xn for each repetition of the experiment.
• These random variables X1, ..., Xn may have complex

relationships among themselves.

7 / 15



Example: ICU Monitoring (d ≈ 10)

Heart rate, blood pressure, temperature....
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Example: Movie Recommendation

A complex decision process. Needs to look at ratings and viewing
patterns of a large number of subscribers.
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Joint PMFs for Many Random Variables

• Before we can think about inference or estimation problems
with many random variables, we need to think about the
implications of representing joint PMFs over many random
variables.
• Why joint PMFs of all random variables?

I It allows us to compute (marginal or conditional) probabilities
of any event that we are interested in.

I For example, what is the probability that a patient has cancer
given test results?

P(Cancer |Test1, · · · , Testn) = P(Cancer , Test1, · · · , Testn)
P(Test1, · · · , Testn)
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The Curse of Dimensionality

• Suppose we have an experiment where we obtain the values of
d random variables X1, ..., Xd , where each variable has binary
outcomes (for simplicity).
• Question: How many numbers does it take to write down a

joint distribution for them?
• Answer: We need to define a probability for each d-bit

sequence:
P(X1 = 0, X2 = 0, ..., Xd = 0)
P(X1 = 1, X2 = 0, ..., Xd = 0)

...
P(X1 = 1, X2 = 1, ..., Xd = 1)

• The number of d-bit sequences is 2d . Because we know that
the probabilities have to add up to 1, we need to write down
2d − 1 numbers to specify the full joint PMF on d binary
variables. 11 / 15



How Fast is Exponential Growth?

• 2d − 1 grows exponentially as d increases linearly:

d 2d − 1
1 1
10 1023
100 1,267,650,600,228,229,401,496,703,205,375
...

...

• Storing the full joint PMF for 100 binary variables would take
about 1030 real numbers or about 1018 terabytes of storage!
• Joint PMFs grow in size so rapidly, we have no hope

whatsoever of storing them explicitly for problems with more
than about 30 (binary) random variables.
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Factorizing Joint Distributions

• We start by factorizing the joint distribution, i.e., re-writing
the joint distribution as a product of conditional PMFs over
single variables (called factors).
• Let us assume that we have a joint probability table of X1,

X2, and X3.
• We need to start by applying the chain rule using a specific

order of variables. Let’s use the order X1, X3, X2:

P(X1 = a1, X2 = a2, X3 = a3)
= P(X1 = a1)P(X2 = a2, X3 = a3|X1 = a1)
= P(X1 = a1)P(X3 = a3|X1 = a1)P(X2 = a2|X1 = a1, X3 = a3)

• The representation has exactly the same storage requirements
as the full joint PMF. Why?
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Conditional Independence: Simplification 1

• If we know some conditional independency between the
variables, we can save some space.
• Let us assume that we happened to know the following

independency:
I P(X3 = a3|X1 = a1) = P(X3 = a3) for all a1, a3
I P(X2 = a2|X1 = a1, X3 = a3) = P(X2 = a2) for all a1, a2, a3.

• This gives the “Marginal independence model”

P(X1 = a1, X2 = a2, X3 = a3)
= P(X1 = a1)P(X3 = a3|X1 = a1)P(X2 = a2|X1 = a1, X3 = a3)
= P(X1 = a1)P(X2 = a2)P(X3 = a3)

• How many numbers do we need to store for three binary
random variables in this case?
3 (as opposed to 23 − 1 = 7 if we encoded the full joint)
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Conditional Independence: Simplification 2

• Suppose we instead only assume that:
I P(X2 = a2|X1 = a1, X3 = a3) = P(X2 = a2|X1 = a1) for all

a1, a2, a3.
• This gives the “conditional independence model” X2: is

conditionally independent of X3 given X1

P(X1 = a1, X2 = a2, X3 = a3)
= P(X1 = a1)P(X3 = a3|X1 = a1)P(X2 = a2|X1 = a1, X3 = a3)
= P(X1 = a1)P(X3 = a3|X1 = a1)P(X2 = a2|X1 = a1)

• How many numbers do we need to store for three binary
random variables in this case?
1 + 2 + 2 = 5 (as opposed to 23 − 1 = 7 if we encoded the
full joint)
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