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Lecture 27: Bayesian Networks



Outline of this Lecture

Review of Chain Rule

Review of Joint and Marginal Probabilities

The Curse of Dimensionality and Factorization

Definition of Bayesian Network (a Directed Acyclic Graph)

Some examples of BayesNet
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Chain Rule

e Simplest form of the chain rule is
P(A, B) = P(B|A)P(A) = P(A|B)P(B)
e Chain rule for 3 variables

P(A, B, C) = P(C|A, B)P(A|B)P(B)
C|A, B)P(B|A)P(A)
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e This can be generalized as
P(Xnv T 7X1) - P(Xn‘anlv T vXI)P(anlv T aXI)
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Joint and Marginal Probabilities - Review

e For two discrete random variables X and Y, the joint PMF P(X,Y)
was defined as

PX=x,Y=y)=P(X=xand Y =y)=P{X=x}n{Y =y})
e Marginal probabilities could be computed as

PX=x)=> PX=x,Y=y)

=Y PX=x,Y=y)

e For multiple discrete random variables Xi, - -- X, whose joint PMF is
denoted as P(Xi, -+ X,), marginal probabilities could be computed
as

X1—X1 Z ZPXl—Xl,XQ—XQ," 7)(,,:Xn)
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Marginal Probability - Review

XY 1 ] 2 [3]4] [X][PX

1 01|01 | 0|02 1| 04
2 0.05005|01] O 2| 02
3 0 0.1 10201 3] 04
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Many Random Variables

e In practice, it is much common to encounter real-world
problems that involve measuring multiple random variables
Xi, ..., X, for each repetition of the experiment.

e These random variables Xi, ..., X, may have complex
relationships among themselves.
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Example: 1CU Monitoring (d =~ 10)

Heart rate, blood pressure, temperature....
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Example: Movie Recommendation

A complex decision process. Needs to look at ratings and viewing
patterns of a large number of subscribers.

N E -I— I: |. | x ~ | Your Account & Help
Movies, TV shaws, actors, deciors, ganves @

Watch Instantly Browse DVDs Your Queue Movies You'll ®

Congratulations! Movies we think You will @

Add movies to your Queue, or Rate ones you've seen for even better suggestions.

Spider-Man 3 The Rundown

RRRA RARKR
© Mot ntsrested © ot Interssted S tot terested

Las Vegas: Season 2 Robot Chicken: Season 3
( Star Wars: Episode Il (2-Disc Series)

JaT EHIC)
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Joint PMFs for Many Random Variables

e Before we can think about inference or estimation problems
with many random variables, we need to think about the
implications of representing joint PMFs over many random
variables.

e Why joint PMFs of all random variables?

> It allows us to compute (marginal or conditional) probabilities

of any event that we are interested in.
» For example, what is the probability that a patient has cancer

given test results?

P(Cancer, Testy, - - - , Test,)
P(Testy, - -, Test,)

P(Cancer|Testy,- - - , Test,) =
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The Curse of Dimensionality

e Suppose we have an experiment where we obtain the values of
d random variables X, ..., Xy, where each variable has binary
outcomes (for simplicity).

e Question: How many numbers does it take to write down a
joint distribution for them?

e Answer: We need to define a probability for each d-bit
sequence:

P(Xy =0,X2=0,...,Xq = 0)
P(Xy=1,X2=0,...,.Xg = 0)

PXi=1,%=1,..X4=1)

e The number of d-bit sequences is 29. Because we know that
the probabilities have to add up to 1, we need to write down
29 — 1 numbers to specify the full joint PMF on d binary
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How Fast is Exponential Growth?

e 29 — 1 grows exponentially as d increases linearly:

|d [29-1
1 [1
10 | 1023

100 | 1,267,650,600,228,229,401,496,703,205,375

e Storing the full joint PMF for 100 binary variables would take
about 1030 real numbers or about 10'8 terabytes of storage!

e Joint PMFs grow in size so rapidly, we have no hope
whatsoever of storing them explicitly for problems with more
than about 30 (binary) random variables.

12/15



Factorizing Joint Distributions

We start by factorizing the joint distribution, i.e., re-writing
the joint distribution as a product of conditional PMFs over
single variables (called factors).

Let us assume that we have a joint probability table of Xi,
X2, and X3.

We need to start by applying the chain rule using a specific
order of variables. Let's use the order Xi, X3, Xo:

P(X1 = a1, Xo = ap, X3 = a3)
X1 = al)P(X2 = 32,X3 = 33‘X1 = 31)
Xl = al)P(X3 = 33|X1 = al)P(X2 = 32|X1 = al,X3 = 33)

The representation has exactly the same storage requirements
as the full joint PMF. Why?
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Conditional Independence: Simplification 1

If we know some conditional independency between the
variables, we can save some space.
Let us assume that we happened to know the following
independency:

> P(X3 = a3|X1 = al) = P(X3 = 33) for all di, as

> P(Xo = ap| Xy = a1, X3 = a3) = P(Xo = a,) for all a, as, as3.

This gives the “Marginal independence model”

P(X1 = a1, X2 = a2, X3 = a3)
= P(Xl = al)P(X3 = 33|X1 = al)P(X2 = 32|X1 = 31,X3 = 33)
= P(X1 = al)P(X2 = ag)P(Xg, = 33)

How many numbers do we need to store for three binary
random variables in this case?
3 (as opposed to 23 — 1 = 7 if we encoded the full joint)
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Conditional Independence: Simplification 2

e Suppose we instead only assume that:
> P(X2 = 32|X1 = 317X3 = 33) = P(X2 = 32|X1 = 31) for all
di, az, as.

e This gives the “conditional independence model” X3: is
conditionally independent of X3 given X

P(Xl = al,Xz = 32,X3 = 33)
= P(X1 = al)P(X3 = a3|X1 = al)P(X2 = az‘Xl = 31,X3 = 33)
= P(Xl = al)P(X3 = a3|X1 = al)P(X2 = 32|X1 = 31)
e How many numbers do we need to store for three binary
random variables in this case?

1+2+2=5 (as opposed to 23 — 1 = 7 if we encoded the
full joint)
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