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Lecture 26: Markov Chains III



Recap: Discrete Markov Chain

• We consider discrete-time Markov chain, in which the state
changes at certain discrete time instances, indexed by an
integer variable t.
• A discrete Markov chain defines a series of random variables

Xt , e.g., {X0, X1, X2, . . .}.
• A Markov Chain consists:

I State space: a set of states in which the chain can be
described at time t:

S = {s1, . . . , sk}

I Transition probabilities that describe the probability of
transitioning from a state at t − 1 to another state at t:

P (Xt = sj |Xt−1 = si ) = pij for all 1 ≤ i , j ≤ k

I An initial state X0, in which the chain is initiated.
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Markov Chain

• Write the probability distribution of each Xt as

vt = 〈vt [1], vt [2], . . . , vt [k]〉
= 〈P (Xt = s1) , P (Xt = s2) , . . . , P (Xt = sk)〉.

• If we happen to know the vt , then we can compute vt+1 using
the Total Probability Law.

P (Xt+1 = sj) =
∑

i
P (Xt+1 = sj |Xt = si ) P (Xt = si ) .

or
vt+1[j] =

∑
i

vt [i ]pij
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Steady State Distribution
Do all Markov chains have the property that eventually the distribution settles to the
“same steady” state regardless of the initial state?

Definition
We have

v = lim
t→∞

vt

〈v [1], v [2], . . . , v [k]〉 = lim
t→∞

〈vt [1], vt [2], . . . , vt [k]〉

If we have

v [j] =
k∑

i=1

pij v [i] for j = 1, · · · , k

and
k∑

j=1

v [j] = 1

Then, we say v is a steady state distribution for the Markov Chain.
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Classification of States

• We say that a state i is recurrent if for every j that is
accessible from i , i is also accessible from j .
I Denoting A(i) as a set of states that are accessible from i , for

all j that belong to A(i) we have that i belongs to A(j).
• If i is a recurrent state, the set of states A(i) that are

accessible from i form a recurrent class.
I States in A(i) are all accessible from each other, and no state

outside A(i) is accessible from them.
• A state is called transient if it is not recurrent.
• A Markov chain with multiple recurrent classes does not

converges to a unique steady state.
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Classification of States
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Classification of States
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Classification of States
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Classification of States

Example
Consider the Markov Chain with transition matrix:

A =


0 0.9 0.05 0.05

0.2 0.8 0 0
0 0 1 0
0 0 0 1


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Recurrent States

• Question: Which of the following Markov chains have a
single recurrent class?

• Answer: Right two chains
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Periodic Recurrent Class

Definition
• Consider a recurrent class.
• Let us group all the states into d disjoint groups of states

S1, · · · , Sd ; a group has to contain at least one state.
• Such a recurrent class is called periodic if there exists at least

one group (of states) in the chain that is visited with a period
of T . That is, group(s) are visited at time
{T , 2T , 3T , 4T , . . .} steps for T ∈ {2, 3, . . .}.
• If a recurrent class is not periodic, we call the class aperiodic.
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Periodic/Aperiodic Class

• Question: Which of the following Markov chains contain a
single periodic recurrent class?

• Answer: Only the one to the left (with period of 2).
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Periodic/Aperiodic Class

• Question: Does the following Markov chain contain a single
periodic recurrent class?
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Periodic/Aperiodic Class

• Question: Does the following Markov chains contain a single
periodic recurrent class?

• Answer: Yes. Group 1 (State 1 and 2) and Group 2 (States
3) occur periodically.
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Steady-State Convergence Theorem

Theorem
Consider a Markov chain with a single, aperiodic recurrent class.
Then, the states in such a Markov chain have steady-state
distribution.
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Steady State Distribution Example

• Consider a Markov chain C with 2 states and transition matrix

A =
(

1− a a
b 1− b

)

for some 0 < a, b < 1
• Does C have a single recurrent class? Yes.
• Is C periodic? No, as long as 0 < a, b < 1
• Then, what is its steady state distribution v?
• Let v = (c, 1− c) be a steady state distribution.
• Solving v [j] =

∑m
k=1 v [k]pkj for gives:

v∗ =
( b

a + b ,
a

a + b

)
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Example: Web Graph Transition Diagram
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Markov Chains: Steady State Applications

• One of the most profitable applications of steady state theory
in Markov chains is Google’s PageRank Algorithm.
• The states are all possible pages on the web.
• The probability of transitioning from page i to page j is the

fraction of out-going links from page i that point to page j .
• The steady state distribution tells you the proportion of time

someone randomly surfing the web would end up on each
page.
• Use this to rank among the pages that match a keyword

search.
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