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Lecture 20: Central limit theorem &
The strong law of large numbers



Markov and Chebyshev Bounds

e Markov Bound
» Informally: If a nonnegative RV has a small mean, then the
probability that this RV takes a large value must also be small.
» Formally: For a non-negative random variable X,

E(X)

P(X > a) <

e Chebyshev Bound
» Informally: If a RV has small variance, then the probability
that it takes a value far from its mean is also small. Note that
the Chebyshev inequality does not require the random variable

to be nonnegative.
» Formally: For a random variable X,

Var(X)
2

P(IX - E(X)| = ¢) <
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The Weak Law of Large Numbers

e Informally: If nis large, the bulk of the distribution of the
sample mean (X,) of a sequence of i.i.d. with mean px and
variance 2 will converge to (be concentrated around) s.

e Formally: Let X1, Xa,--- be a sequence of i.i.d. (either
discrete or continuous) random variable with mean . For
every € > 0, we have

P(|Y,,—M|Ze)—>Oasn—>oo.
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Convergence in probability

e Let Y1, Y2, ... be a sequence of random variables (not
necessarily independent), and let a be a real number.

e We say that the sequence Y, converges to a in probability,
if for every € > 0, we have

,,“_EQOPOY" —al>¢)=0
e Put it another way: Ve, § > 0, dng such that Vn > ng
P(|Y,—a|l >¢€) <9

Our measurement is accurate, with this much confidence.
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The Strong Law of Large Numbers

Let Xy, X2, -+ be a sequence of i.i.d. (either discrete or
continuous) random variable with mean g and variance o2,

Then, the sequence of sample mean X, converges to j as
n — oo, with probability 1:

P(lim Xp=p) =1

Its sample mean X,,, which is a RV, will converge to the true
mean u, which is a constant, with a probability 1 when we
have an infinitely large sample size.

> More specifically, an event of X, = x1 has a probability of 1.
Example: Let X; ~ Bern(p), then

(JL”QO,,ZX —P>

6/15



The Central Limit Theorem

e The LLN states that X, converges to 1 when n is large.

» The distribution of the sample mean X, is concentrated
around p.

e But what does the distribution of X, look like?
e The Central Limit Theorem can define this.
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The Central Limit Theorem

e Let us define a variable by normalizing X, with its mean and
standard deviation

» |n the same manner as we normalized a Normal RV to derive
the Standard Normal RV.

Zy =

X

n— M

Sh

or equivalently

X144 Xy — np

ay/n

e Then, the PDF of Z, converges to the standard normal PDF
as n — oo

Z, =

Z, ~ N(0,1) as n — oo
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The Central Limit Theorem

The CLT is surprisingly general and extremely powerful.

It states that X; can have any forms of (discrete, continuous,
or a mixture) probability distribution, but its sample mean
converges to a Standard Normal distribution as n becomes
large.

Conceptually, this is important as it indicates that the sum of
a large number of i.i.d RV is approximately normal.
Practically, this is important as it eliminates the need for

detailed probabilistic models as long as we have a large
sample size. We can still approximate its sample mean using

the Standard Normal distribution as long as we know x and o.
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The Central Limit Theorem

Let us run a simulation to see if this work!
Consider a continuous exponential RV whose A = 0.01

Sampling distribution of X, when n =2

50000 samples of Xn, wheren =2 and X is a Exp RV
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The Central Limit Theorem

e Let us run a simulation to see if this work!
e Consider a continuous exponential RV whose A = 0.01

e Sampling distribution of X,, when n =4

50000 samples of Xn, wheren =4 and X is a Exp RV
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T

he Central Limit Theorem

e Let us run a simulation to see if this work!

e Consider a continuous exponential RV whose A = 0.01

Sampling distribution of X, when n = 20
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50000 samples of Xn, where n =20 and X is a Exp RV
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The Central Limit Theorem

Let us run a simulation to see if this work!
Consider a continuous exponential RV whose A = 0.01

Sampling distribution of X, when n = 100

50000 samples of Xn, where n =100 and X is a Exp RV
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Example

e Question: Suppose salaries at a very large company have a
mean of $62,000 and a standard deviation of $32,000.

e If a single employee is randomly selected, what is the
probability that his/her salary exceeds $66,0007?

e Solution: We cannot solve this problem since we do not have
the true distribution function of the salaries.
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Example

e Question: Suppose salaries at a very large company have a
mean of $62,000 and a standard deviation of $32,000.
e If 100 employees are randomly selected, what is the
probability that their average salary exceeds $66,000?
e Solution:
» We define a new random variable
Z = X

I

<k

Then,

32000

P(X, > 66000) = P (Z >
V100

6am0—6mmo>

= P(Z > 1.25)
=1— d(1.25)
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