COMPSCI 240: Reasoning Under Uncertainty

Nic Herndon and Andrew Lan

University of Massachusetts at Amherst

Spring 2019
Lecture 19: Weak law of large numbers & Convergence in probability
Markov and Chebyshev Bounds

- **Markov Bound**
 - Informally: If a nonnegative RV has a small mean, then the probability that this RV takes a large value must also be small.
 - Formally: For a non-negative random variable \(X \),
 \[
 P(X \geq a) \leq \frac{E(X)}{a}
 \]

- **Chebyshev Bound**
 - Informally: If a RV has small variance, then the probability that it takes a value far from its mean is also small. Note that the Chebyshev inequality does not require the random variable to be nonnegative.
 - Formally: For a random variable \(X \),
 \[
 P(|X - E(X)| \geq c) \leq \frac{Var(X)}{c^2}
 \]

- The mean and the variance of a RV are only a rough summary of its properties, and we cannot expect the bounds to be close approximations of the exact probabilities.
Let X_1, X_2, \cdots, X_n be a sequence of i.i.d. (either discrete or continuous) random variables with mean of μ and variance of σ^2.

Its sample (empirical) mean can be computed as

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Note that \overline{X}_n is also a random variable.

We know that the expected value of the sample mean is

$$E \left[\overline{X}_n \right] = E \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} n \mu = \mu$$

We also know that the variance and standard deviations of the sample mean are

$$\text{Var}(\overline{X}_n) = \text{Var} \left(\frac{\sum_{i=1}^{n} X_i}{n} \right) = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}$$

$$\text{Std}(\overline{X}_n) = \frac{\sigma}{\sqrt{n}}$$
The Weak Law of Large Numbers

- Let X_1, X_2, \ldots be a sequence of i.i.d. (either discrete or continuous) random variables with mean μ and variance σ^2. For every $\epsilon > 0$, we have

$$ P \left(|\overline{X}_n - \mu| \geq \epsilon \right) \to 0 \text{ as } n \to \infty. $$

- The weak law of large numbers states that if n is large, the bulk of the distribution of \overline{X}_n will converge to (be concentrated around) μ.

- That is, if we consider a positive length interval $[\mu - \epsilon, \mu + \epsilon]$ around μ, then there is high probability that \overline{X}_n will fall in that interval; as $n \to \infty$, this probability converges to 1. If ϵ is very small, we may have to wait longer (i.e., need a larger value of n) before this probability converges to 1.
The Weak Law of Large Numbers

- Let X_1, X_2, \cdots be a sequence of i.i.d. (either discrete or continuous) random variable with mean μ and variance σ^2. For every $\epsilon > 0$, we have

$$P \left(|\bar{X}_n - \mu| \geq \epsilon \right) \to 0 \text{ as } n \to \infty.$$

- **Proof:**
 - We know that the **Chebyshev bound** for a random variable X defines

$$P(|X - \mu| \geq \epsilon) \leq \frac{\text{Var}(X)}{\epsilon^2}$$

- Using this, we can write the weak law of large numbers as

$$P \left(|\bar{X}_n - \mu| \geq \epsilon \right) \leq \frac{\text{Var}(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

- Thus,

$$\lim_{n \to \infty} P \left(|\bar{X}_n - \mu| \geq \epsilon \right) \leq \lim_{n \to \infty} \frac{\sigma^2}{n\epsilon^2} = 0$$
Example 1

- Consider an event A with probability $p = P(A)$.
- We repeat the experiment n times.
- Let \overline{X}_n be the fraction of time that event A occurs. This is the empirical frequency of A

 $$\overline{X}_n = \frac{X_1 + \cdots + X_n}{n},$$

 where $X_i = 1$ whenever A occurs, and 0 otherwise; thus $E[X_i] = p$.
- The weak law applies and shows that when n is large, the empirical frequency is most likely to be within ϵ of p.
- Loosely speaking, this allows us to conclude that empirical frequencies are faithful estimates of p.
- Alternatively, this is a step towards interpreting the probability p as the frequency of occurrence of A.

Example 2

- Let p be the fraction of voters who support a particular candidate for office.
- We interview n “randomly selected” voters and record \bar{X}_n, the fraction of them that support the candidate.
- We view \bar{X}_n as our estimate of p and would like to investigate its properties (the true value of p is assumed to be unknown).
- The response of each person interviewed can be viewed as an independent Bernoulli random variable X, with success probability p and variance $\sigma^2 = p(1 - p)$.
- The Chebyshev inequality yields

$$P(|\bar{X}_n - p| \geq \epsilon) \leq \frac{p(1 - p)}{n\epsilon^2}$$

- Since $p(1 - p) \leq 1/4$ (Example 5.3 in the textbook), we have

$$P(|\bar{X}_n - p| \geq \epsilon) \leq \frac{1}{4n\epsilon^2}$$
Example 2 (cont.)

\[P(\overline{X}_n - p \geq \epsilon) \leq \frac{1}{4n\epsilon^2} \]

- Let \(\epsilon = 0.1 \) and \(n = 100 \):
 \[P(\overline{X}_{100} - p \geq 0.1) \leq \frac{1}{4 \cdot 100 \cdot (0.1)^2} = 0.25 \]
 That is, with a sample size of \(n = 100 \), the probability that our estimate is incorrect by more than 0.1 is no larger than 0.25.

- Let’s say we’d like to have high confidence (probability at least 95%) that our estimate is within 0.01 of \(p \) accurate. How many voters should be sampled?
 \[P(\overline{X}_n - p \geq 0.1) \leq \frac{1}{4n(0.1)^2} \leq 1 - 0.95 \]
 \[n \geq 50,000 \]
Convergence in probability

- Let Y_1, Y_2, \ldots be a sequence of random variables (not necessarily independent), and let a be a real number.
- We say that the sequence Y_n converges to a in probability, if for every $\epsilon > 0$, we have
 \[\lim_{n \to \infty} P(|Y_n - a| \geq \epsilon) = 0 \]
- Given this definition, the weak law of large numbers simply states that the sample mean converges in probability to the true mean μ.
Example

- In order to estimate f, the true fraction of smokers in a large population, Alvin selects n people at random. His estimator \overline{X}_n is obtained by dividing X_n, the number of smokers in the sample, by n, i.e., $\overline{X}_n = X_n/n$. Alvin choose the sample size n to be the smallest possible number for which the Chebyshev inequality yields a guarantee that

$$P(|\overline{X}_n - f| \geq \epsilon) \leq \delta$$

where ϵ and δ are some predefined tolerances. Determine how the value of n recommended by the Chebyshev inequality changes in the following cases.

a) The value of ϵ is reduced to half its original value.

b) The probability δ is reduced to half its original value.
Example (solution)

- The best guarantee that can be obtained from the Chebyshev inequality is
 \[P(\left| \bar{X}_n - f \right| \geq \epsilon) \leq \frac{1}{4n\epsilon^2} \]

 a) How should the value of \(n \) be updated if \(\epsilon \) is reduced to half its original value?

 \[
 \frac{1}{4n\epsilon^2} = \frac{1}{4n'\epsilon'^2} \Rightarrow n' = \frac{n\epsilon^2}{\epsilon'^2} = \frac{n\epsilon^2}{(\epsilon/2)^2} = 4n
 \]

 The sample size should be four times larger.

 b) How should the value of \(n \) be updated if the probability \(\delta \) is reduced to half its original value?

 \[
 \frac{1}{4n\epsilon^2} = \frac{2}{4n'\epsilon^2} \Rightarrow n' = 2n
 \]

 The sample size should be doubled.
Usefulness of limit theorems

- Conceptually, they provide an interpretation of expectations (as well as probabilities) in terms of a long sequence of identical independent experiments.
- They allow for an approximate analysis of the properties of random variables such as X_n. This is to be contrasted with an exact analysis which would require a formula for the PMF or PDF of X_n, a complicated and tedious task when n is large.
- They play a major role in inference and statistics, in the presence of large data sets.