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Lecture 18: Limit Theorems



Overview

e Let Xq, Xz, -+, X, be a sequence of i.i.d. (either discrete or
continuous) random variables with mean of x and variance of
2
o“.

e Limit theorems are mostly concerned with the sum of these
random variables (which forms another random variable):

Sn:X1+X2+"'+Xn

especially when n is very large.
e Then, the mean and variance of S,, can be computed as

E[Sn] = E[X1] + E[X2] 4+ - - + E[Xa] = nu

var(S,) = var(X1) + var(Xz) + - - - + var(X,) = no?
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Overview

e Let us introduce a new RV:

~ Sp—nu

Zy
av/n

e The mean and variance of Z, is
E[Z,)=0

var(Z,) =1

e The central limit theorem states that the distribution of Z,
becomes the standard normal variable as n increases.
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Markov and Chebyshev Bounds

We will learn these two bounds to prove the Central Limit
Theorem. More specifically, Markov Inequality — Chebyshev
Inequality — Central Limit Theorem.

e Markov Bound: For a non-negative random variable X,

_ EIX]

P(X > a) 5

e Chebyshev Bound: For a random variable X,

var(X)
2

P(IX - EX]| = ¢c) <
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The Markov Bound

Markov Bound: For any non-negative random variable,

P(X > a) < E[X]

Proof: Introduce a new RV Y, where

y, — 0 ifX<a
a ifX>a

Then, we know that Y, < X, which yields
E[Y.] < E[X]
On the other hand,
E[Ys]=a-P(Yo=a)=a-P(X >a)

Thus,
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The Markov Bound

e Let X be a continuous random variable with uniform density over [0,4].
e Its mean can be computed as

41
E[X] :/ x=dx =2
o 4
e Then, the Markov inequality asserts that
P(X > 0) <1 whereas P(X >0) =1.

P(X >1) <1 whereas P(X > 1) = %

P(X > 2) <1 whereas P(X > 2) =0.5.

These are uninformative...

1
P(X > 3) < = whereas P(X > 3) = "

N WIN

P(X >4)< " whereas P(X > 4) =0

e The Markov inequality can be quite loose.

7/12



The Chebyshev Bound

Chebyshev Bound:

2

P(|X —E[X]| >¢c) < oz forall c >0

Proof: Let us introduce a non-negative RV (X — p)>.
We can apply the Markov bound on this RV:
Y 2
P((X — p)? >a)<M:i
a a
We will only consider a > 0 where a can be defined as a = c?. Then, we

have )

o
P((X*H)z 2 C2)§ =
Since the event (X — p)? > c? is identical to the event |X — u| > c,

PUX =i > ) = P(X — i > ) <

The Chebyshev bound is often more powerful than the Markov bound
because it also uses information on the variance of X.
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An Alternate Form of The Chebyshev Bound

e Let ¢ = ko, then

PX il k) = P (| X 2 k) =

k2

e The probability that a RV takes a value more than k standard deviations
from its mean is at most 1/k>.
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The Chebyshev Bound

Let X be a continuous random variable with uniform density over [0,4].

Its mean is
A |
E[X]:/ x—dx = 2.
0o 4

Its variance is 4
var(X) = E[X’] - E[X]* = 3

Then, the Chebyshev inequality asserts that
P(]X —2] > 0) <1 so is not informative

P(|X —2| > 1) <1 so is not informative

P(IX—-2]>2)< % or equivalently P(X > 4U X <0) <

W =

We can also derive that

PO< X <4)>

WIN
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Example

Suppose we know that the number of items produced in a factory
during a week is a random variable with mean of 50 and variance
of 25.

e What can be said about the probability that this week's
production will exceed 757
By Markov's inequaity

50

P(X > 75) < e

_2
3
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Example

Suppose we know that the number of items produced in a factory
during a week is a random variable with mean of 50 and variance
of 25.

e What can be said about the probability that this week's
production will be between 40 and 607
By Chebyshev's inequality

25
X — >1 -
Thus,

P(40 < X < 60) =1 — P(|X — 50| > 10) >

BlW
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