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Lecture 17: Correlation and Causation



Quantifying Dependence: Correlation

• The range of cov(X ,Y ) values depends on the means of X ,
Y , and XY .
• The correlation ρ between X and Y is closely related to the

covariance, but is normalized to the range [−1, 1]:

ρ(X ,Y ) = corr(X ,Y ) = cov(X ,Y )√
var(X )var(Y )

• ρ = 1 indicates maximum positive covariance (e.g., ρ(X ,X ))
and ρ = −1 indicates maximum negative covariance (e.g.,
ρ(X ,−X )).
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Quantifying Dependence: Correlation

P(X,Y)
X\Y Y = 0 Y = 1

X = 0 0.4 0.1
X = 1 0.2 0.3

• We computed that cov(X ,Y ) = 0.1
• P(X = 0) = 0.5,P(X = 1) = 0.5 and so

var(X) = E [X 2]− E [X ]2 = 0.5− 0.25 = 0.25
• P(Y = 0) = 0.6,P(Y = 1) = 0.4 and so

var(Y ) = E [Y 2]− E [Y ]2 = 0.4− 0.16 = 0.24
• Then,

ρ(X ,Y ) = 0.1√
0.25× 0.24

= 0.41
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Quantifying Dependence: Correlation

• The computed (empirical) correlation was ρ = 0.95.
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Visualizing Correlations: Height vs Weight

• The computed (empirical) correlation was ρ = 0.56.

6 / 12



Visualizing Correlations: Linear vs Non-Linear
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Example

• Let X and Y be discrete random variables with the following
joint PMF:

PX ,Y (x , y) = 1
4 , for all (x , y) ∈ {(0, 0), (1, 1), (1,−1), (2, 0)}

• What is the covariance and correlation of X and Y ?

Cov(X ,Y ) = E [X ,Y ]− E [X ]E [Y ] = 0− (1× 0) = 0

ρ(X ,Y ) = 0

• Are X and Y independent?
• No, since PX ,Y (X ,Y ) 6= PX (x)PY (y).
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Example

• Let X and Y be continuous random variables with the following joint PDF:

fX ,Y (x , y) = 3x , 0 ≤ y ≤ x ≤ 1

• What is the covariance and correlation of X and Y ?

Cov(X ,Y ) = E [X ,Y ] − E [X ]E [Y ]

• To compute E [X ] and E [Y ], we need to compute the marginal PDF of X and Y .

fX (x) =
∫ ∞
−∞

fX ,Y (x , y)dy =
∫ x

0
3xdy = 3x2, 0 ≤ x ≤ 1

Then,

E [X ] =
∫ ∞
−∞

xfX (x)dx =
∫ 1

0
3x3dx =

3
4

Similarly,

fY (y) =
∫ ∞
−∞

fX ,Y (x , y)dx =
∫ 1

y
3xdx =

3
2

(1 − y2), 0 ≤ y ≤ 1

Then,

E [Y ] =
∫ ∞
−∞

yfY (y)dy =
∫ 1

0

3
2

(y − y3)dy =
(3

4
y2 −

3
8

y4
) ∣∣∣1

0
=

3
8
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Example

• E [X ,Y ] can be computed as

E [XY ] =
∫ ∞
−∞

∫ ∞
−∞

xyfX ,Y (x , y)dydx =
∫ 1

0

∫ x

0
3x2ydydx

=
∫ 1

0

3
2

x2y2
∣∣∣x
0
dx =

∫ 1

0

3
2

x4dx

=
3
10

y5
∣∣∣1
0

=
3
10

• Then, Cov(X ,Y ) is

Cov(X ,Y ) = E [X ,Y ] − E [X ]E [Y ] =
3
10

−
3
4

×
3
8

=
3

160

• The correlation ρ(X ,Y ) is

ρ(X ,Y ) =
Cov(X ,Y )√
var(X)var(Y )

=
3

160
3
80 × 19

320
= 0.397
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Causation

• Question: When two random variables are correlated does
this mean one random variable causes the other?
• Example: In the height/weight example, height and weight

were positively correlated. Does increasing your weight make
you taller?
• Example: There are more fireman at the scene of larger fires.

Do fireman cause an increase in the size of a fire?
• Example: More people drown on days where a lot of ice

cream is sold. Does ice cream cause drowning?
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Causation

Given two correlated random variables X and Y :
• X might cause Y (i.e., causation)
• Y might cause X (i.e., reverse causation)
• A third random variable Z might cause X and Y (i.e., common

cause)
• A combination of all of these (e.g., self-reinforcement)
• The correlation might be spurious due to small sample size

12 / 12


