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Lecture 16: Joint PDFs



A Joint PDF of Multiple RVs

e We now consider a joint PDF of multiple random variables.

e We say that two continuous random variables associated with

the same experiment are jointly continuous and have a joint
PDF fx y.

P((X,Y) € B) = / / iy (x, y)dxdy.
(x,y)eB

e If B is defined such that B = {(x,y)|la < x < b,c <y < d},
then

d rb
P(agxgb,cgygd)—/ / fx,v (x, y)dxdy
Cc a

b d
= / / fx v (x, y)dydx.
a C
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Joint Normal Random Variables
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A Joint PDF of Multiple RVs

e A joint PDF should satisfy:
> Non-negative: fx y(x,y) >0 forall (X,Y) C &2
» Normalization: [~ [* fx v(x,y)dxdy = 1.

e We can compute marginal PDFs fx and fy as

fx(x) = /OO fx,v(x,y)dy

and -
fy()/):/ fx, v (x, y)dx

—00
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Example

Let fx y(x,y) be a two-dimensional uniform PDF within
—1<x<land2<y<6.

c, if —1<x<land2<y<6

fX,Y(va):{ 0 . o =)=

Then, what is P(0 < x <1,2<y <3)?
Solution: We know that

/ / cdxdy = 1.

otherwise,

e Then, we know that ¢
e Then,

3 1
1
P(0<1<b,2<y<3)=//dxdy
> Jo 8
1
8
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Joint CDF

o We define a joint CDF of two RVs X and Y as

Fxy(x,y)=P(X <x,Y <y)

X ry
= / / fx7y(5, t)dtdS

e Conversely, the joint PDF can be derived from the joint CDF

as 5
0 FX,Y(X7y)

fX,Y(va): axay
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Expectation

If X and Y are random variables, then Z = g(X, Y) is also a
random variable.

The expected value of Z can be computed as
E@) = EEX. V) = [ [ eX.V)fey(xy)dcdy

Note that when Z = X, then we can compute the expected
value of X.

If g(X,Y) is a linear function of X and Y, e.g.,
g(X,Y)=aX+ bY + c, we have

E[aX 4+ bY + c] = aE[X] + bE[Y] + ¢

Proof:
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Example

Let X and Y are jointly continuous with

Flx.y) o+ f0<x<1,0<y<2
xX,y) = .
Y 0 otherwise.

(a) Find P(X+Y >1).
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Example

Let X and Y are jointly continuous with

o+ f0<x<1,0<y<2
(x.y) = .
0 otherwise.

(a) Find P(X+Y >1).

// quL dydx—1:>c—1

P(X+Y21):/ / (X2+%>dydx:
0 1—x

(b) Find marginal PDF’s of X and Y.
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fx(x):2x2+2?xif0§X§1.

fr(y) = l+*|f0<y<2

(c) Are X and Y independent?

72

9/15



Example

Let X and Y are jointly continuous with

o+ f0<x<1,0<y<2
(x.y) = .
0 otherwise.

(a) Find P(X+Y >1).

// quL dydx—1:>c—1

P(X+Y21):/ / (X2+%>dydx:
0 1—x

(b) Find marginal PDF’s of X and Y.

65

fx(x):2x2+2?xif0§X§1.

fr(y) = l+*|f0<y<2

(c) Are X and Y independent? No.

72

9/15



Motivation Example - Covariance and Correlation

e Hypothetically assume that there exists a mysterious wireless signal transmitter
that 1) produces a uniform continuous random variable Z from [0, 5] and 2)
wirelessly transmits the signal.

e Assume that you are a manufacturer of a new receiver that can estimate the
transmitted value of Z with some uncertainty (i.e., noise). Let's say that the
noise can be modeled as a normally distributed random variable with mean 0
and standard deviation 0.5. This estimated value X is:

X = Z + N(0,0.5)

o Further assume that there exists a competitor in the market that can very
accurately estimate the transmitted value of Z. This estimated value Y is:

Y =Z + N(0,0.1)

» e
H Receiver

z 1
Transmitter ""1
- s
Receiver
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Motivation Example - Covariance and Correlation

e Assume that you, as a new manufacturer, do not know the exact
values of these mean and standard deviation, but want to see if your
receiver’s estimated values agree with the competitor's.

e You collected 1000 values of X and Y through an experiment and
compared the values:
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Quantifying Dependence: Covariance

The covariance between any two RVs (either discrete or
continuous) X and Y is one measure of dependence that
quantifies the degree to which there is a linear relationship
between X and Y.

cov(X,Y) = E[(X — E[X])(Y — E[Y])]
= E[XY] — E[X]E[Y]

If X and Y are independent then cov(X, Y) =0.

However, cov(X, Y) = 0 does not necessarily imply that X
and Y are independent (see Example 4.13 of the text).

Note that cov(X, X) = var(X).
For a constant a, cov(X,aY + b) = a- cov(X, Y). Prove it.

Note that var(X + Y) = var(X) + var(Y) + 2cov(X, Y).
Prove it.
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Quantifying Dependence: Covariance

e Prove that cov(X, Y + Z) = cov(X, Y) + cov(X, Z).

e More generalized equation

cov (X,zn: Y,-) = Zn:cov(X, Yi)
i=1 i=1
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Example

P(X.Y)
X\Y [Yy=o0[Y=1
X=0] 04 0.1
X=1] 02 03

P(X =0)=0.5,P(X =1)=0.5and so E[X] =0.5
P(Y =0)=0.6,P(Y =1)=0.4 and so E[Y] =0.4

E[XY] can be computed as follows

E[XY] = 0xO0xP(X=0,Y=0)+0x1xP(X=0Y=1)
4 Ix0xPX=1,Y=0)4+1x1xPX=1Y=1)

=03

cov(X, Y) = E[XY] — E[X]E[Y] = 0.3 — 0.5 x 0.4 = 0.1
How well X and Y are correlated given that cov(X, Y) = 0.1?
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Quantifying Dependence: Covariance

e Similarly, the computed (empirical) covariance of the previous
example was cov(X, Y) = 2.14.

e What does this mean?

15/15



