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week.
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Problem #1

Problem Statement
Suppose you toss two dices at the same time. If at least one
of them is five or six, you win. You toss ¢ times. What is

your expected number of wins? gc

Let p be the probability of having five or six for at least one

dice.
p =3 - 3% (both dice > 5) + 1. 2 (only first dice > 5)
+ 2 - 1 (only second dice > 5) = 2

Repeating the toss ¢ times generates a binomial RV, whose

expectation is np = 2¢



Problem #5

Problem Statement

Two coins are simultaneously tossed until at least one of
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probability p;, and the second with probability 0.4. All tosses
are assumed independent. What is the variance of the
number of tosses?
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Problem #5

Problem Statement

Two coins are simultaneously tossed until at least one of
them comes up a head. The first coin comes up a head with
probability p;, and the second with probability 0.4. All tosses
are assumed independent. What is the variance of the

number of tosses?
Var = %, where p=1—0.6(1 — p;)

This is a geometric RV, where an event is “successful” if one

of the two coins show a head.
p = P({H1, T2}) + P({ Ty, H2}) + P({H1, H2})

Variance for geometric RV is ===



Problem #6

Problem Statement

A contractor purchases a shipment of 102 transistors. It is
his policy to randomly select and test 10 of these transistors
and to keep the shipment only if at least 9 of the 10 are in
working condition. If we know that 20% of the transistors
have defects, what is the probability the contractor will keep
all the transistors?
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Problem #6

Problem Statement

A contractor purchases a shipment of 102 transistors. It is
his policy to randomly select and test 10 of these transistors
and to keep the shipment only if at least 9 of the 10 are in
working condition. If we know that 20% of the transistors
have defects, what is the probability the contractor will keep
all the transistors? 0.38

This is a binomial RV where p =1 —20% = 0.8
He will keep all purchased transistors when 9 or 10 samples are

in working conditions

1 1
P(X =9 or X = 10) = (90) 0.2'0.8° + < 0

.290.810 = 0.3758
10)0 0.8
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Problem #7

Problem Statement
The distribution of a random variable X is shown in the table
below and the expectation E[X] = 2. What is the maximum

value of ab? 4.9

X a 2 b
P(X=x)]02|03]05

E[X]=02a+2-03+05b=2=— b=28—-0.4a

ab = a(2.8 — 0.4a)
Taking the derivative of a(2.8 — 0.4a) w.r.t. a and making the
derivative zero give us the value of a that maximizes ab.
This yields —0.8a+28=0=— a=3.5
Then ab = 3.5(2.8 —0.4-3.5) =49



Practice Problems




Problem Statement

Alvin throws darts at a circular target of radius r and is
equally likely to hit any point in the target. Let X be the
distance of Alvin's hit from the center.

Find the PDF, the mean, and the variance of X.
Hint: Calculate CDF first.
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Find the PDF, the mean, and the variance of X.
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By differentiating, we obtain the PDF
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Question #1 Solution

Find the PDF, the mean, and the variance of X.
For x € [0, r], Fx(x) = P(X < x) = fr—fj = (%)2
By differentiating, we obtain the PDF

2 fo<x<r

X

We have
E[X]:/ 20 dx = &, E[x2]:/ 20 dgx = .
0 0

So

L4
9 18"

N

Var(X) = E[X?] — E[X]* =



Problem Statement

Jane goes to the bank to make a withdrawal, and is equally
likely to find O or 1 customers ahead of her. The service time
of the customer ahead, if present, is exponentially distributed
with parameters \.

What is the CDF of Jane’s waiting time 77

Hint: use total probability theorem.

Fr(t)=P(T <t)="---

An exponentially distributed random variable X with
parameter A (A > 0) has a PDF of the form

e ™ if x>0
fx(x) = _
0 otherwise
10



Question #2 Solution

What is the CDF of Jane’s waiting time 77
Let X be the number of customers found. For t < 0, we have
FT(t) = O
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Question #2 Solution

What is the CDF of Jane’s waiting time 77
Let X be the number of customers found. For t < 0, we have
Fr(t) =0. For t > 0,

Fr(t)=P(T <t)=L1P(T <t|X =0)+ 1P(T <t|X =1)

1
2

11



Question #2 Solution

What is the CDF of Jane’s waiting time 77

Let X be the number of customers found. For t < 0, we have
Fr(t) =0. For t > 0,

Fr(t) = P(T <t)=1P(T <t|X =0)+LP(T < t|X =1)
Since

P(T <t|X=0)=1,

t
P(T<tX=1)= / e Mdt =1— e
0

11



Question #2 Solution

What is the CDF of Jane’s waiting time 77

Let X be the number of customers found. For t < 0, we have
Fr(t) =0. For t > 0,

Fr(t)=P(T <t)=1P(T <t|X =0)+1P(T <t|X =1)

Since
P(T <t|X=0)=1,
t
P(T<tlX=1)= / e Mdt=1—e
0
We obtain

(2—e) ift>0

1
FT(t) — 2 .
0 otherwise 11
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Normal (Gaussian) Random Variables

1. PDF of a normal random variable X ~ N(u, 0?):
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X(X) T V27102 e =

2. The range of normal RV:

(—OO, OO)

3. The mean of a normal RV X ~ N (p, 0?):
1

4. The variance of normal RV X ~ N (u, 0?):
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Normal (Gaussian) Random Variables

1. PDF of a normal random variable X ~ N(u, 0?):

P 1 —ﬁ(x—uf
X(X) T V27102 e =

2. The range of normal RV:

(—OO, OO)

3. The mean of a normal RV X ~ N (p, 0?):
1

4. The variance of normal RV X ~ N (u, 0?):

02

12
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