Evaluating actions vs. instructing by giving correct actions

Pure evaluative feedback depends totally on the action taken. Pure instructive feedback depends not at all on the action taken.

Supervised learning is instructive; optimization is evaluative

Associative vs. Nonassociative:

- Associative: inputs mapped to outputs; learn the best output for each input
- Nonassociative: “learn” (find) one best output

n-armed bandit (at least how we treat it) is:

- Nonassociative
- Evaluative feedback
The n-Armed Bandit Problem

- Choose repeatedly from one of n actions; each choice is called a **play**
- After each play a_t, you get a reward r_t, where

$$E\langle r_t \mid a_t \rangle = Q^*(a_t)$$

These are unknown **action values**
Distribution of r_t depends only on a_t

- Objective is to maximize the reward in the long term, e.g., over 1000 plays

To solve the n-armed bandit problem, you must **explore** a variety of actions and the **exploit** the best of them
The Exploration/Exploitation Dilemma

- Suppose you form estimates
 \[Q_t(a) \approx Q^*(a) \]
 action value estimates

- The greedy action at \(t \) is
 \[a_t^* = \arg\max_a Q_t(a) \]
 \[a_t = a_t^* \Rightarrow \text{exploitation} \]
 \[a_t \neq a_t^* \Rightarrow \text{exploration} \]

- You can’t exploit all the time; you can’t explore all the time
- You can never stop exploring; but you should always reduce exploring
Action-Value Methods

- Methods that adapt action-value estimates and nothing else, e.g.: suppose by the t-th play, action a had been chosen k_a times, producing rewards $r_1, r_2, \ldots, r_{k_a}$, then

$$Q_t(a) = \frac{r_1 + r_2 + \cdots + r_{k_a}}{k_a}$$

"sample average"

- $$\lim_{k_a \to \infty} Q_t(a) = Q^*(a)$$
ε-Greedy Action Selection

- Greedy action selection:

\[a_t = a_t^* = \arg\max_a Q_t(a) \]

- ε-Greedy:

\[a_t = \begin{cases}
 a_t^* & \text{with probability } 1 - \varepsilon \\
 \text{random action} & \text{with probability } \varepsilon
 \end{cases} \]

... the simplest way to try to balance exploration and exploitation
10-Armed Testbed

- $n = 10$ possible actions
- Each $Q^*(a)$ is chosen randomly from a normal distribution: $\eta(0, 1)$
- Each r_t is also normal: $\eta(Q^*(a_t), 1)$
- 1000 plays
- Repeat the whole thing 2000 times and average the results
ε-Greedy Methods on the 10-Armed Testbed

![Graph showing average reward and optimal action over plays for different ε values.]

- Average reward
- Optimal action
- Plays

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
Softmax Action Selection

- Softmax action selection methods grade action probs. by estimated values.
- The most common softmax uses a Gibbs, or Boltzmann, distribution:

Choose action a on play t with probability

$$
\frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^{n} e^{Q_t(b)/\tau}}
$$

where τ is the "computational temperature"
Binary Bandit Tasks

Suppose you have just two actions: \(a_t = 1 \) or \(a_t = 2 \), and just two rewards: \(r_t = \text{success} \) or \(r_t = \text{failure} \).

Then you might infer a target or desired action:

\[
d_t = \begin{cases}
a_t & \text{if success} \\
\text{the other action} & \text{if failure}
\end{cases}
\]

and then always play the action that was most often the target.

Call this the \textit{supervised algorithm}.
It works fine on deterministic tasks…
Contingency Space

The space of all possible binary bandit tasks:
Let \(\pi_t(a) = \Pr\{a_t = a\} \) be the only adapted parameter

\[L_{R-I} \text{ (Linear, reward - inaction)} \]

On success: \(\pi_{t+1}(a_t) = \pi_t(a_t) + \alpha(1 - \pi_t(a_t)) \quad 0 < \alpha < 1 \)

(the other action probs. are adjusted to still sum to 1)

On failure: no change

\[L_{R-P} \text{ (Linear, reward - penalty)} \]

On success: \(\pi_{t+1}(a_t) = \pi_t(a_t) + \alpha(1 - \pi_t(a_t)) \quad 0 < \alpha < 1 \)

(The other action probs. are adjusted to still sum to 1)

On failure: \(\pi_{t+1}(a_t) = \pi_t(a_t) + \alpha(0 - \pi_t(a_t)) \quad 0 < \alpha < 1 \)

For two actions, a stochastic, incremental version of the supervised algorithm
Performance on Binary Bandit Tasks A and B

![Graphs showing performance on Binary Bandit Tasks A and B](image-url)
Incremental Implementation

Recall the sample average estimation method:

The average of the first k rewards is (dropping the dependence on a):

$$Q_k = \frac{r_1 + r_2 + \cdots + r_k}{k}$$

Can we do this incrementally (without storing all the rewards)?

We could keep a running sum and count, or, equivalently:

$$Q_{k+1} = Q_k + \frac{1}{k+1}[r_{k+1} - Q_k]$$

This is a common form for update rules:

$$\text{NewEstimate} = \text{OldEstimate} + \text{StepSize} \cdot [\text{Target} - \text{OldEstimate}]$$
Tracking a Nonstationary Problem

Choosing \(Q_k \) to be a sample average is appropriate in a stationary problem, i.e., when none of the \(Q^*(a) \) change over time,

But not in a nonstationary problem.

Better in the nonstationary case is:

\[
Q_{k+1} = Q_k + \alpha \left[r_{k+1} - Q_k \right]
\]

for constant \(\alpha \), \(0 < \alpha \leq 1 \)

\[
= (1 - \alpha)^k Q_0 + \sum_{i=1}^{k} \alpha(1 - \alpha)^{k-i} r_i
\]

exponential, recency-weighted average
Optimistic Initial Values

- All methods so far depend on $Q_0(a)$, i.e., they are biased.
- Suppose instead we initialize the action values **optimistically**, i.e., on the 10-armed testbed, use $Q_0(a) = 5$ for all a.

![Graph showing the percentage of optimal actions over plays for different strategies: optimistic, greedy with $Q_0 = 5$, $\epsilon = 0$; realistic, ϵ-greedy with $Q_0 = 0$, $\epsilon = 0.1$.](image)
Reinforcement Comparison

- Compare rewards to a reference reward, \bar{r}_t, e.g., an average of observed rewards
- Strengthen or weaken the action taken depending on $r_t - \bar{r}_t$
- Let $p_t(a)$ denote the preference for action a
- Preferences determine action probabilities, e.g., by Gibbs distribution:

$$\pi_t(a) = \Pr\{a_t = a\} = \frac{e^{p_t(a)}}{\sum_{b=1}^ne^{p_t(b)}}$$

- Then:

$$p_{t+1}(a_t) = p_t(a) + \left[r_t - \bar{r}_t\right] \quad \text{and} \quad \bar{r}_{t+1} = \bar{r}_t + \alpha\left[r_t - \bar{r}_t\right]$$
Performance of a Reinforcement Comparison Method

% Optimal action

reinforcement comparison

ϵ-greedy
$\epsilon = 0.1$, $\alpha = 1/k$

ϵ-greedy
$\epsilon = 0.1$, $\alpha = 0.1$
Pursuit Methods

- Maintain both action-value estimates and action preferences
- Always “pursue” the greedy action, i.e., make the greedy action more likely to be selected
- After the t-th play, update the action values to get Q_{t+1}
- The new greedy action is $a_{t+1}^* = \arg \max_a Q_{t+1}(a)$

Then:

$$\pi_{t+1}(a_{t+1}^*) = \pi_t(a_{t+1}^*) + \beta \left[1 - \pi_t(a_{t+1}^*) \right]$$

and the probs. of the other actions decremented to maintain the sum of 1
Performance of a Pursuit Method

- Greedy pursuit
 - $\epsilon = 0.1$, $\alpha = 1/k$

- Reinforcement comparison

% Optimal action vs. Plays
Imagine switching bandits at each play
Conclusions

- These are all very simple methods
 - but they are complicated enough—we will build on them
- Ideas for improvements:
 - estimating uncertainties . . . interval estimation
 - approximating Bayes optimal solutions
 - Gittens indices
- The full RL problem offers some ideas for solution . . .