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Mini-project 2 (really) due today!
‣ Turn in a printout of your work at the end of the class 
!

Project presentations!
‣ April 23 (Thursday next week) and 28 (Tuesday the week after) 
‣ Order will be randomized so be prepared to present on either day 
‣ 8 mins total for each group (set aside 1-2 mins for questions) 

➡ Problem statement, approach, preliminary results, future work 
➡ How to give a good talk: http://www.cs.berkeley.edu/~jrs/speaking.html 

Final report!
‣ Maximum of 8 pages in NIPS paper format (word + latex style files) 

➡ https://nips.cc/Conferences/2014/PaperInformation/StyleFiles 
‣ Writeup due on May 3 6 (submit pdf via Moodle) 

➡ Hard deadline — I’ve to submit your grades to the University

Administrivia
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Supervised learning!
‣ decision trees 
‣ k nearest neighbor 
‣ perceptrons (+ kernels) 
‣ neural networks (+ convolution) 
Learning is:!
‣ optimization 
‣ density estimation 

… with known labels 
Learning is hard!
‣ bias-variance tradeoff 
‣ ensembles reduce variance 
Learning is possible!
‣ boosting weak learners

Overview of ML so far …
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Unsupervised learning!
‣ k-means 
‣ PCA (+ kernels) 
‣ spectral methods 
‣ mean shift 
Learning is:!
‣ optimization 
‣ density estimation 

 … with hidden “labels” 
EM: a general technique to solve 
hidden variable problem 
!
Reinforcement learning!
‣ labels come from experience 
‣ guest lecture by Kevin Spiteri 

next Tuesday
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Often, we want to reason about a sequence of observations!
‣ Speech recognition 
‣ Robot localization 
‣ User attention 
‣ Medical monitoring 
‣ Weather forecasting 
!

Need to introduce time in our models!
Basic approach: Hidden Markov models (HMMs)!
More general approach: Dynamic Bayes Nets (DBNs)

Reasoning over time
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A way of specifying conditional independences!
A Bayes Network (BN) is a directed acyclic graph (DAG)!
Nodes are random variables!
A node’s distribution only depends on its parents!
Joint distribution decomposes:!
!
!
A node’s value is conditionally independent of everything else given 
the value of its parents:

Bayes network — a quick intro
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p(x) = �ip(xi|Parentsi)

X1 

X2 

X3 

X4 X5 

X6 

p(x6| x2, x5) 
p(x1) 

p(x5| x4) 
p(x4| x1) 

p(x2| x1) 
p(x3| x2) 

example BN
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A Markov model is a chain-structured BN!
‣ Each node is identically distributed (stationarity) 
‣ Value of X at a given time t is called the state 
‣ As a BN: 
!
!
!
!

Parameters of the model!
‣ Transition probabilities or dynamics that specify how the state 

evolves over time 
‣ The initial probabilities of each state

Markov models

6



Subhransu Maji (UMASS)CMPSCI 689 /36

Basic conditional independence:!
‣ Past and future independent of the present 
‣ Each time step only depends on the previous 
‣ This is called the (first order) Markov property 
!
Note that the chain is just a (growing) BN!
‣ We can always use generic BN reasoning on it (if we truncate the 

chain)

Conditional independence
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Weather:!
‣ States: X = {rain, sun} 
‣ Transitions:!
!
!
!
!
!
!

‣ Initial distribution: 1.0 sun 
‣ Question: What is the probability distribution after one step? 

P(X2=sun) = P(X2=sun|X1=sun)P(X1=sun) + P(X2=sun|X1=rain)P(X1=rain) 
                 = 0.9 x 1.0 + 0.1 x 0.0 

     = 0.9

Markov model: example
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This is a CPT 
and not a BN!
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Text synthesis — create plausible looking poetry, love letters, term 
papers, etc.!
!
Typically a higher order Markov model!
Sample word wt based on the previous n words i.e:!
‣ wt ~ P(wt | wt-1, wt-2,…, wt-n) 
‣ These probability tables can be computed from lots of text 
!

Examples of text synthesis [A.K. Dewdney, Scientific American 1989]!
‣ “As I've commented before, really relating to someone involves 

standing next to impossible.” 
‣ “One morning I shot an elephant in my arms and kissed him.” 
‣ “I spent an interesting evening recently with a grain of salt”

Markov model: example
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Slide from Alyosha Efros, ICCV 1999
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Question: probability of being in a state x at a time t?!
Slow answer:!
‣ Enumerate all sequences of length t with end in s 
‣ Add up their probabilities:

Mini-forward algorithm
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P (X
t

= sun) =
X

x1,...,xt�1

P (x1, . . . , xt�1, sun)

P (X1 = sun)P (X2 = sun|X1 = sun) . . . P (Xt = sun|Xt�1 = sun)

P (X1 = sun)P (X2 = rain|X1 = sun) . . . P (Xt = sun|Xt�1 = sun)

…

O(2t�1)
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Better way: cached incremental belief updates!
‣ (GM folks: this is an instance of variable elimination)

Mini-forward algorithm
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P (x1) = known

P (x
t

) =
X

xt�1

P (x
t�1)P (x

t

|x
t�1)

forward simulation
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From initial observation of sun!
!
!
!
!
!
From initial observation of rain

Example
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If we simulate the chain long enough!
‣ What happens? 
‣ Uncertainty accumulates 
‣ Eventually, we have no idea what the state is! 
!

Stationary distributions:!
‣ For most chains, the distribution we end up in is independent of the 

initial distribution (but not always uniform!) 
‣ This distribution is called the stationary distribution of the chain 
‣ Usually, can only predict a short time out

Stationary distribution
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PageRank over a web graph !
Each web page is a state!
Initial distribution: uniform over pages !
Transitions:	

‣ With probability c, uniform jump to a random page (dotted lines)	

‣ With probability 1-c, follow a random outlink (solid lines) 
!
Stationary distribution!
‣ Will spend more time on highly reachable pages	

‣ E.g. many ways to get to the Acrobat Reader download page	

‣ Somewhat robust to link spam (but not immune)	

‣ Google 1.0 returned the set of pages containing all your keywords 

in decreasing rank, now all search engines use link analysis along 
with many other factors

Web link analysis
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Markov chains not so useful for most agents!
‣ Eventually you don’t know anything anymore	


‣ Need observations to update your beliefs 
!
Hidden Markov Models (HMMs)	

‣ Underlying Markov chain over states S 
‣ You observe outputs (effects) at each time step 
‣ As a Bayes net:

Hidden Markov Models
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An HMM is defined by:!
‣ Initial distribution: P(X1) 
‣ Transitions: O(Xt | Xt-1) 
‣ Emissions: P(E | X)

Example
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HMMs have two important independence properties:!
‣ Markov hidden process, future depends on past via the present 
‣ Current observations independent of all else given the current state 
!
!
!
!
!
!

Quiz: does this mean that the observations are independent?

Conditional independence
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‣ No, correlated by the hidden state



Subhransu Maji (UMASS)CMPSCI 689 /36

Speech recognition HMMs:!
‣ Observations are acoustic signals (continuous valued)	

‣ States are specific positions in specific words (so, tens of 

thousands) 
!
Machine translation HMMs:!
‣ Observations are words (tens of thousands)	

‣ States are translation options  
!

Robot tracking HMMs:	

‣ Observations are range readings (continuous) 
‣ States are positions on a map (continuous)

Real HMM examples
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Filtering is the task of tracking the distribution B(X) (the belief state)!
We start with B(X) in the initial setting, usually uniform!
As time passes, or we get observations we update B(X)

Filtering states
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Example: Robot localization
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Sensor model: can sense if each side has a wall or not 
(never more than 1 mistake)

Motion model: may not execute action with a small probability

prob
high low

Example from Michael Pfeiffer

t=0



Subhransu Maji (UMASS)CMPSCI 689 /36

Example: Robot localization
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prob
high low

t=1
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Example: Robot localization
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prob
high low

t=2
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Example: Robot localization

23

prob
high low

t=3
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Example: Robot localization
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prob
high low

t=4
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Example: Robot localization
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prob
high low

t=5
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Assume we have a current belief state P(X | evidence to date)!
!
!
Then, after one time step passes:!
!
!
Or, compactly:!
!
!
!
Basic idea: beliefs get “pushed” though the transitions!
‣ With the “B” notation, we have to be careful about what time step t 

the belief is about, and what evidence it includes

Passage of time

26



Subhransu Maji (UMASS)CMPSCI 689 /36

Example HMM
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Question: most likely sequence ending in x at time t?!
‣ E.g., if sun on day 4, what’s the most likely sequence? 
‣ Intuitively: probably sun on all four days 
!

Slow answer: enumerate and score!
!
!
!

‣ Complexity

Most likely explanation
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most likely sequence arg max

x1,...,xt�1

P (x1, . . . , xt�1, sun)

O(2t�1)
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Better answer: cached incremental updates!
!
!
!
!
!
Define:!
!
!
!
!
!
Read of the best sequence from the m and a vectors

Mini-Viterbi algoritm
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m

t

[x] = max

x1:t�1

P (x1:t�1, x)

a

t

[x] = arg max

x1:t�1

P (x1:t�1, x)



Subhransu Maji (UMASS)CMPSCI 689 /36

Mini-Viterbi algoritm
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m

t

[x] = max

x1:t�1

P (x1:t�1, x)

= max

x1:t�1

P (x1:t�1)P (x|x
t�1)

= max

xt�1

P (x|x
t�1) max

x1:t�2

P (x1:t�2, xt�1)

= max

xt�1

P (x|x
t�1)mt�1[xt�1]

m1[x] = P (x)

Better answer: cached incremental updates
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Question: what is the most likely state sequence given the observations?!
‣ Slow answer: enumerate all possibilities 
‣ Better answer: cached incremental version

Viterbi algorithm
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x

⇤
1:t = argmax

x1:t

P (x1:t|e1:t)

m

t

[x

t

] = max

x1:t�1

P (x1:t�1, xt

, e1:t)

= max

x1:t�1

P (x1:t�1, e1:t�1)P (x

t

|x
t�1)P (e

t

|x
t

)

= P (e

t

|x
t

)max

xt�1

P (x

t

|x
t�1) max

x1:t�2

P (x1:t�1, e1:t�1)

= P (e

t

|x
t

)max

xt�1

P (x

t

|x
t�1)mt�1[xt�1]
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Example

32
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Given sequences of training data (X1, Y1)  (X2, Y2) … (XN, YN) — the 
hidden states are known!
Maximum-likelihood parameters estimation is easy:!
‣ Transition probabilities: 
!
!
!

‣ Emission probabilities: 
!
!
!

‣ Initial probabilities:

Learning discrete HMMs: I
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Pt(a|b) =
P

n,t[X
n
t = a,Xn

t�1 = b]
P

n,t,a[X
n
t = a,Xn

t�1 = b]

Pe(a|b) =
P

n,t[Y
n
t = a,Xn

t = b]
P

n,t,a[Y
n
t = a,Xn

t = b]

⇡(a) =

P
n[X

n
1 = a]P

n,a[X
n
1 = a]
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Given sequences of training data (Y1,Y2, …,YN) — no hidden states!
Use EM algorithm! !
‣ Randomly initialize parameters of the HMM 
‣ E step: Compute posterior probabilities 
!
!

‣ M step: Update parameters of the HMM 
!

➡ Transition probabilities: 
!
!
➡ Emission probabilities: 
!

➡ Initial probabilities:

Learning discrete HMMs: II
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⇡(a) =

P
n q(X

n
1 = a)P

n,a q(X
n
1 = a)

Pt(a|b) =
P

n,t q(X
n
t = a,Xn

t�1 = b)
P

n,t,a q(X
n
t = a,Xn

t�1 = b)

q(Xn
t = a,Xn

t�1 = b) p(Xn
t = a,Xn

t�1 = b|D,⇥)

Pe(a|b) =
P

n,t[Y
n
t = a]q(Xn

t = b)
P

n,t,a[Y
n
t = a]q(Xn

t = b)

q(Xn
t = a) p(Xn

t = a|D,⇥)
dynamic 

programming
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Hidden Markov Models (HMMs) for modeling sequential data!
‣ Parameters for a discrete HMM: transition probabilities, emission 

probabilities, initial state probabilities  
!
Inference questions —!
‣ What is the belief state given observations? 
‣ What is the most likely explanation given the observations? (Viterbi) 
‣ All of these can be computed using dynamic programming in 

O(S2T) time compared to brute-force enumeration that needs O(ST) 
time!

!
Learning HMMs!
‣ Known hidden states — ML estimates of parameters are 

proportional to the counts 
‣ Unknown hidden states — use EM (Baum-Welch 1960)

Summary
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Many of the slides are adapted from those by Hal Daume III, Dan 
Klein, Stuart Russell or Andrew Moore!
The “sprinkler, rain, grass” figure is from Wikipedia’s discussion on 
Bayes networks http://en.wikipedia.org/wiki/Bayesian_network!
The robot navigation example is from Michael Pfeiffer

Slides credit
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http://en.wikipedia.org/wiki/Bayesian_network

