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Data visualization!
‣ Hard to visualize data that lives in high dimensions — reduce it two 

two or three dimensions for visualization 
!
!
!
!
!
!
!
Curse of dimensionality!
‣ Some learning methods don’t scale well with the number of features 

(e.g., kNN, kernel density estimators) 
‣ Lower memory overhead and training/testing time  
‣ Fewer dimensions is a form of regularization

Motivation
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[Hadsell et al, CVPR 06]
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The goal is to reduce the dimension of the data in high-dimensions 
(say 10000) to low dimensions (say 2) while retaining the “important” 
characteristics of the data!
Unsupervised setting, so the notion of important characteristics is 
hard to define!
Closely related to clustering!
‣ Clustering: reduce the number of data 
‣ Dimensionality reduction: reduce the number of features

Dimensionality reduction
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All you can do is project the data onto a vector and use the projected 
distances as the embeddings!
Example: projecting two dimensional data to one

Linear dimensionality reduction
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Find a linear projection that maximizes the variance of the projection!
Assume we have data x1, x2, …, xN ∈ RD of zero mean!
Let u be the projection vector!
Let the projections of the data p1,p2 ,…, pN!

!
!
The mean of the projections is zero!
!
!
!
Maximize the variance of the projection:

Optimal linear projection
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Lets rewrite this in matrix notation!
Let X be the NxD data matrix (each row is data point)!
The projection vector u is a Dx1 matrix!
The vector of projections is given by Xu, a Nx1 matrix!
We can rewrite the optimization as:!
!
!
The corresponding Lagrangian is:!
!
!
At maxima:

Optimal linear projection
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Compute the data covariance matrix XTX!
!
!
!
‣ The optimal (maximal variance) projection direction is the first 

eigenvector of the data covariance matrix 
!
!
What about learning a second projection direction?!
‣ For non-redundancy additionally require that vTu = 0 
!
!

‣ This is the second eigenvector of the data covariance matrix

Optimal linear projection
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Generalizing this argument leads to principal component analysis !
The eigenvectors give you the projection directions — to compute the 
embeddings you have to multiply the data by the projections!
For completeness here is the Matlab code:

Principal component analysis (PCA)
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PCA projections



Subhransu Maji (UMASS)CMPSCI 689 /19

Eigenfaces — a linear basis for face images [Turk, Pentland ’91]!
Each face is a weighted linear combination of eigenfaces!
Compare faces by comparing the weights 

Application: Eigenfaces
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Input images Principal components
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For visualization K=2 or 3!
For dimensionality reduction it depends on the problem!
‣ Option: ignore projections that correspond to small eigenvalues 
‣ Option: based on computational and memory constraints

What should K be?

10

K

λ

threshold



Subhransu Maji (UMASS)CMPSCI 689 /19

We can use the kernel trick to learn linear projections in feature space!
PCA representer theorem: the projection direction                               
is a linear combination of the data points!
!
PCA using only dot products between the data

Kernel PCA
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Formulation using kernels:!
!
!
The corresponding Lagrangian is:!
!
!
At optimality:!
!
!
!
Hence α is a eigenvector of the kernel matrix K!
Different eigenvectors correspond to different projections

Kernel PCA
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How do we center the data in kernel space?!
‣ Recall that PCA requires zero mean data 
Centering be written in terms of kernels as well:!
!
!
!
!
!
Where the matrix 1 is defined as:!
!
!
Perform PCA on the K’ matrix and compute the eigenvectors α!
Projections of the data are K’α

Kernel PCA
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Linear and kernel PCA

14



Subhransu Maji (UMASS)CMPSCI 689 /19

Normalized cuts objective:!
!
!
!
!
!
Relax the integer constraint on y:!
!
!
Same as:                                     (generalized eigenvalue problem)!
Note that                            , so the first eigenvector is y1 = 1, with the 
corresponding eigenvalue of 0!
The eigenvector corresponding to the second smallest eigenvalue is 
the solution to the relaxed problem

Spectral clustering revisited
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Spectral clustering = spectral embedding + thresholding (or k-means)!
Recall the earlier example!
‣ Gaussian weighted edges connected to 3 nearest neighbors 
‣ Below are the components of the eigenvector corresponding to the 

second smallest eigenvalue 

Spectral clustering example
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Image segmentation: multiple eigenvalues reshaped into an image!
!
!
!
!
!
!
Toy dataset

Spectral embedding examples
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http://ttic.uchicago.edu/~mmaire/papers/pdf/amfm_tpami2011.pdf

http://ttic.uchicago.edu/~mmaire/papers/pdf/amfm_tpami2011.pdf
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Dimensionality reduction for visualization or preprocessing!
Linear methods!
‣ PCA — linear projections of data 

➡ solve (XTX)x = λx — eigenvectors of covariance matrix 
Non-linear methods!
‣ kernel PCA — linear projections in kernel space 

➡ solve Kx = λx — eigenvectors of the kernel matrix 
‣ Spectral embedding — graph partitions 

➡ solve (D - W)x = λDx — eigenvectors of the Graph laplacian 
!
There are several methods that we didn’t discuss!
‣ ISOMAP, locally linear embedding, tSNE, etc

Summary
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Some of the slides are based on CIML book by Hal Daume III!
Linear and kernel PCA notes: http://pca.narod.ru/scholkopf_kernel.pdf!
The example for kernel PCA is from: http://sebastianraschka.com/
Articles/2014_kernel_pca.html

Slides credit
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http://pca.narod.ru/scholkopf_kernel.pdf
http://sebastianraschka.com/Articles/2014_kernel_pca.html

