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Supervised learning: learning with a teacher!
‣ You had training data which was (feature, label) pairs and the goal 

was to learn a mapping from features to labels 
!
Unsupervised learning: learning without a teacher!
‣ Only features and no labels 
Why is unsupervised learning useful?!
‣ Discover hidden structures in the data — clustering 
‣ Visualization — dimensionality reduction 

➡ lower dimensional features might help learning

So far in the course
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Basic idea: group together similar instances!
Example: 2D points

Clustering
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Basic idea: group together similar instances!
Example: 2D points!
!
!
!
!
!
!
What could similar mean?!
‣ One option: small Euclidean distance (squared) 
!
!

‣ Clustering results are crucially dependent on the measure of 
similarity (or distance) between points to be clustered

Clustering
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dist(x,y) = ||x� y||22
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Simple clustering: organize 
elements into k groups!
‣ K-means 
‣ Mean shift 
‣ Spectral clustering 
!

!
!
Hierarchical clustering: organize 
elements into a hierarchy!
‣ Bottom up - agglomerative 
‣ Top down - divisive

Clustering algorithms
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Image segmentation: break up the image into similar regions

Clustering examples
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image credit: Berkeley segmentation benchmark
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Clustering news articles

Clustering examples
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Clustering queries

Clustering examples
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Clustering people by space and time

Clustering examples
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image credit: Pilho Kim
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Clustering species (phylogeny)

Clustering examples
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[K. Lindblad-Toh, Nature 2005]

phylogeny of canid species 
(dogs, wolves, foxes, jackals, etc)
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Given (x1, x2, …, xn) partition the n observations into k (≤ n) sets 
S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of 
squared distances 
!
The objective is to minimize:

Clustering using k-means
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argmin
S

kX
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X

x2Si

||x� µi||2

cluster center
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Initialize k centers by picking k points randomly among all the points!
Repeat till convergence (or max iterations)!
‣ Assign each point to the nearest center (assignment step) 

!
!
!

‣ Estimate the mean of each group (update step)

Lloyd’s algorithm for k-means
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k-means in action
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http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/

http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/
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k-means++

Guaranteed to converge in a finite number of iterations!
‣ The objective decreases monotonically over time 
‣ Local minima if the partitions don’t change. Since there are finitely 

many partitions, k-means algorithm must converge 
!

Running time per iteration!
‣ Assignment step: O(NKD) 
‣ Computing cluster mean: O(ND) 
!

Issues with the algorithm:!
‣ Worst case running time is super-polynomial in input size 
‣ No guarantees about global optimality 

➡ Optimal clustering even for 2 clusters is NP-hard [Aloise et al., 09]

Properties of the Lloyd’s algorithm
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A way to pick the good initial centers!
‣ Intuition: spread out the k initial cluster centers 
The algorithm proceeds normally once the centers are initialized!
k-means++ algorithm for initialization:!
1.Chose one center uniformly at random among all the points 
2.For each point x, compute D(x), the distance between x and the 

nearest center that has already been chosen 
3.Chose one new data point at random as a new center, using a 

weighted probability distribution where a point x is chosen with a 
probability proportional to D(x)2 

4.Repeat Steps 2 and 3 until k centers have been chosen 
!
[Arthur and Vassilvitskii’07] The approximation quality is O(log k) in 
expectation

k-means++ algorithm
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http://en.wikipedia.org/wiki/K-means%2B%2B

http://en.wikipedia.org/wiki/K-means%2B%2B
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k-means for image segmentation
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Grouping pixels based 
 on intensity similarity

feature space: intensity value (1D)

K=2

K=3
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One issue with k-means is that it is sometimes hard to pick k!
The mean shift algorithm seeks modes or local maxima of density in 
the feature space — automatically determines the number of clusters

Clustering using density estimation
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K(x) =

1

Z

X

i

exp

✓
� ||x� xi||2

h

◆
Kernel density estimator

Small h implies more modes (bumpy distribution)
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Mean shift procedure:!
‣ For each point, repeat till convergence 
‣ Compute mean shift vector 
‣ Translate the kernel window by m(x)#
Simply following the gradient of density

Mean shift algorithm
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Slide	  by	  Y.	  Ukrainitz	  &	  B.	  Sarel
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Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Slide	  by	  Y.	  Ukrainitz	  &	  B.	  Sarel
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Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Slide	  by	  Y.	  Ukrainitz	  &	  B.	  Sarel
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Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Slide	  by	  Y.	  Ukrainitz	  &	  B.	  Sarel



Subhransu Maji (UMASS)CMPSCI 689 /48

Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Slide	  by	  Y.	  Ukrainitz	  &	  B.	  Sarel



Subhransu Maji (UMASS)CMPSCI 689 /48

Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Slide	  by	  Y.	  Ukrainitz	  &	  B.	  Sarel
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Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Slide	  by	  Y.	  Ukrainitz	  &	  B.	  Sarel
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Search  
window

Center of 
mass

Mean shift
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Slide	  by	  Y.	  Ukrainitz	  &	  B.	  Sarel
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Cluster all data points in the attraction basin of a mode!
Attraction basin is the region for which all trajectories lead to the 
same mode — correspond to clusters

Mean shift clustering
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Slide	  by	  Y.	  Ukrainitz	  &	  B.	  Sarel
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Feature: L*u*v* color values!
Initialize windows at individual feature points!
Perform mean shift for each window until convergence!
Merge windows that end up near the same “peak” or mode

Mean shift for image segmentation

27



Subhransu Maji (UMASS)CMPSCI 689 /48

Mean shift clustering results
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http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
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Pros:!
‣ Does not assume shape on clusters 
‣ One parameter choice (window size) 
‣ Generic technique 
‣ Finds multiple modes 
Cons:!
‣ Selection of window size 
‣ Is rather expensive: O(DN2) per iteration 
‣ Does not work well for high-dimensional features

Mean shift discussion

29Kristen Grauman
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Spectral clustering
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[Shi & Malik ‘00; Ng, Jordan, Weiss NIPS ‘01] 
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Spectral clustering
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[Figures from Ng, Jordan, Weiss NIPS ‘01] 
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Group points based on the links in a graph!
!
!
!
!
How do we create the graph?!
‣ Weights on the edges based on similarity between the points 
‣ A common choice is the Gaussian kernel 
!

!
One could create!
‣ A fully connected graph 
‣ k-nearest graph (each node is connected only to its k-nearest 

neighbors)

Spectral clustering
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A B

slide credit: Alan Fern

W (i, j) = exp
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Consider a partition of the graph into two parts A and B!
!
!
!
!
!
!
Cut(A, B) is the weight of all edges that connect the two groups!
!
!
!
An intuitive goal is to find a partition that minimizes the cut!
‣ min-cuts in graphs can be computed in polynomial time

Graph cut

33

Cut(A,B) =
X

i2A,j2B

W (i, j) = 0.3
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The weight of a cut is proportional to number of edges in the cut; 
tends to produce small, isolated components.

Problem with min-cut

34
[Shi & Malik, 2000 PAMI]

We would like a balanced cut
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Let W(i, j) denote the matrix of the edge weights!
The degree of node in the graph is:!
!
!
!
!
!
!
The volume of a set A is defined as:

Graphs as matrices

35

d(i) =
X

j

W (i, j)

Vol(A) =

X

i2A

d(i)
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Intuition: consider the connectivity between the groups relative to the 
volume of each group:!
!
!
!
!
!
!
!
!
!
Unfortunately minimizing normalized cut is NP-Hard even for planar 
graphs [Shi & Malik, 00]

Normalized cut
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NCut(A,B) =

Cut(A,B)

Vol(A)

+

Cut(A,B)

Vol(B)

NCut(A,B) = Cut(A,B)

✓
Vol(A) + Vol(B)

Vol(A)Vol(B)

◆

minimized when Vol(A) = Vol(B) !
encouraging a balanced cut
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We will formulate an optimization problem!
‣ Let W be the similarity matrix 
‣ Let D be a diagonal matrix with D(i,i) = d(i) — the degree of node i 
‣ Let x be a vector {1, -1}N , x(i) = 1 ↔ i ∈ A 
‣ The matrix (D-W) is called the Laplacian of the graph 
!

With some simplification we can show that the problem of minimizing 
normalized cuts can be written as:

Solving normalized cuts

37

min
x

NCut(x) = min
y

y

T (D �W )y

y

TDy

subject to: yTD1 = 0

y(i) 2 {1,�b}
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Normalized cuts objective:!
!
!
!
!
!
Relax the integer constraint on y:!
!
!
Same as:                                     (Generalized eigenvalue problem)!
Note that                            , so the first eigenvector is y1 = 1, with the 
corresponding eigenvalue of 0!
The eigenvector corresponding to the second smallest eigenvalue is 
the solution to the relaxed problem

Solving normalized cuts
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min
x

NCut(x) = min
y

y

T (D �W )y

y

TDy

subject to: yTD1 = 0

y(i) 2 {1,�b}

(D �W )y = �Dy
(D �W )1 = 0

min

y
yT

(D �W )y; subject to: yTDy = 1,yTD1 = 0
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Data: Gaussian weighted edges connected to 3 nearest neighbors

Spectral clustering example

39
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Components of the eigenvector corresponding to the second smallest 
eigenvalue

Spectral clustering example

40
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The eigenvalue is real valued, so to obtain a split you may threshold it!
How to pick the threshold?!
‣ Pick the median value 
‣ Choose a threshold that minimizes the normalized cut objective 
How to create multiple partitions?!
‣ Recursively split each partition 
‣ Compute multiple eigenvalues and cluster them using k-means 

➡ Example: multiple eigenvalues of an image and their gradients

Creating partitions from eigenvalues

41
http://ttic.uchicago.edu/~mmaire/papers/pdf/amfm_tpami2011.pdf

http://ttic.uchicago.edu/~mmaire/papers/pdf/amfm_tpami2011.pdf
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Hierarchical clustering

42
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Organize elements into a hierarchy!
Two kinds of methods:!
‣ Agglomerative: a “bottom up” approach where elements start as 

individual clusters and clusters are merged as one moves up the 
hierarchy 

‣ Divisive: a “top down” approach where elements start as a single 
cluster and clusters are split as one moves down the hierarchy

Hierarchical clustering

43
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Agglomerative clustering:!
‣ First merge very similar instances 
‣ Incrementally build larger clusters out 

of smaller clusters 
Algorithm:!
‣ Maintain a set of clusters 
‣ Initially, each instance in its own 

cluster 
‣ Repeat: 

➡ Pick the two “closest” clusters 
➡ Merge them into a new cluster 
➡ Stop when there’s only one cluster left 

Produces not one clustering, but a 
family of clusterings represented by a 
dendrogram

Agglomerative clustering

44
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How should we define “closest” for clusters with multiple elements?!
!
Many options:!
‣ Closest pair: single-link clustering 
‣ Farthest pair: complete-link clustering 
‣ Average of all pairs

Agglomerative clustering

45
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Different choices create different clustering behaviors

Agglomerative clustering
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Clustering is an example of unsupervised learning!
Partitions or hierarchy!
Several partitioning algorithms:!
‣ k-means: simple, efficient and often works in practice 

➡ k-means++ for better initialization 
‣ mean shift: modes of density 

➡ slow but suited for problems with unknown number of clusters with 
varying shapes and sizes 

‣ spectral clustering: clustering as graph partitions 
➡ solve (D - W)x = λDx followed by k-means 

Hierarchical clustering methods:!
‣ Agglomerative or divisive 

➡ single-link, complete-link and average-link

Summary

47
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Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav Gogate, 
Carlos Guestrin, Andrew Moore, Dan Klein, James Hays, Alan Fern, 
and Tommi Jaakkola!
!
Many images are from the Berkeley segmentation benchmark!
‣ http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds 
!

Normalized cuts image segmentation:!
‣ http://www.timotheecour.com/research.html

Slides credit
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http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds
http://www.timotheecour.com/research.html

