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So far in the course

¢ Supervised learning: learning with a teacher

» You had training data which was (feature, label) pairs and the goal
was to learn a mapping from features to labels

¢ Unsupervised learning: learning without a teacher
» Only features and no labels
¢ Why is unsupervised learning useful?
» Discover hidden structures in the data — clustering «——today
» Visualization — dimensionality reduction
= lower dimensional features might help learning
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Clustering

¢ Basic idea: group together similar instances
¢ Example: 2D points

o G

CMPSCI 689 Subhransu Maji (UMASS) 3/48



Clustering

¢ Basic idea: group together similar instances
¢ Example: 2D points

+ What could similar mean?
» One option: small Euclidean distance (squared)

dist(x,y) = ||x — y]/3

» Clustering results are crucially dependent on the measure of
similarity (or distance) between points to be clustered
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Clustering algorithms

¢ Simple clustering: organize
elements into k groups

» K-means
» Mean shift
» Spectral clustering

¢ Hierarchical clustering: organize
elements into a hierarchy

» Bottom up - agglomerative
» Top down - divisive
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Clustering examples

¢ Image segmentation: break up the image into similar regions

image credit: Berkeley segmentation benchmark
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Clustering examples

¢ Clustering news articles
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Nuclear deal within reach, vows Iran and Russia

Russia and Iran claimed a breakthrough in talks on a framework deal cutting back
Tehran's nuclear program, but the US denied everything had been agreed as
discussions were due to resume ovemight.

Related Iran »

Religious Freedom Act: Are businesses becoming more
socially activist? (+video)
The companies castigating Indiana's RFRA law are not promoting liberal idealism over
profits: Their response is a recognition that - at least when it comes to the issue of gay
marriage - social activism is also good business.

ISIS’ legacy in Tikrit: booby traps, IEDs and fear

Tikrit, Iraq (CNN) ISIS is gone, but the fear remains. As Iraqi forces, aided by Shiite
militiamen, took control Wednesday of the northern city of Tikrit, they found vehicles
laden with explosives and buildings that might be booby-trapped.

Germanwings Crash: Video May Show Plane’s Final Moments
Two magazines have reported details of a disturbing video taken from inside the
doomed Germanwings plane moments before it crashed into the French Alps, but
investigators have denied its existence.
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Clustering examples

¢ Clustering queries

Go glc jaguars +Swohransy 332 Q) ’

News Images Videos Maps More -~ Search tools ; S SafeSearch - 0
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Clustering examples

¢ Clustering people by space and time

»

o A - —9’ “— : ‘
Map Sata ©2011 Tele Atlas Imagery ©2011 Chee/Spot Image, DigtalGiobe, GeoEyes Jerms oluse

image credit: Pilho Kim
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Clustering examples

¢ Clustering species (phylogeny)

ohylogeny of canid species
(dogs, wolves, foxes, jackals, etc)

[K. Lindblad-Toh, Nature 2005]
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Clustering using k-means

¢ Given (x1, X2, ..., Xn) partition the n observations into k (= n) sets
S =1{S4, Sy, ..., Sk} so as to minimize the within-cluster sum of
squared distances

¢ The objective is to minimize:

k
argmsinz D x = pall?
1=1 x€S5; \

cluster center
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Lloyd’s algorithm for k-means

¢ Initialize k centers by picking k points randomly among all the points
¢ Repeat till convergence (or max iterations)
» Assign each point to the nearest center (assignment step)

k
argmin » > [Jx — ]

1—=1 x€85;

» Estimate the mean of each group (update step)

k
argmin » > [Jx — i
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dimension 2
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http:/simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/
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Properties of the Lloyd’s algorithm

+ Guaranteed to converge in a finite number of iterations
» The objective decreases monotonically over time

» Local minima if the partitions don’t change. Since there are finitely
many partitions, k-means algorithm must converge

+ Running time per iteration
» Assignment step: O(NKD)
» Computing cluster mean: O(ND)

¢ |ssues with the algorithm:
» Worst case running time is super-polynomial in input size
» No guarantees about global optimality
= Optimal clustering even for 2 clusters is NP-hard [Aloise et al., 09]

K-means++
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K-means++ algorithm

+ A way to pick the good initial centers

» Intuition: spread out the k initial cluster centers
+ The algorithm proceeds normally once the centers are initialized
¢ k-means++ algorithm for initialization:

1.Chose one center uniformly at random among all the points

2.For each point x, compute D(x), the distance between x and the
nearest center that has already been chosen

3.Chose one new data point at random as a new center, using a
weighted probability distribution where a point X is chosen with a
probability proportional to D(x)?2

4.Repeat Steps 2 and 3 until k centers have been chosen

¢ [Arthur and Vassilvitskii’0O7] The approximation quality is O(log k) in
expectation

http://en.wikipedia.org/wiki/K-means%2B %28
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K-means for image segmentation

Grouping pixels based
on intensity similarity

<

feature space: intensity value (1D)
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Clustering using density estimation

+ One issue with k-means is that it is sometimes hard to pick k

¢ The mean shift algorithm seeks modes or local maxima of density in
the feature space — automatically determines the number of clusters

Kernel density estimator

() = 5 Y (X 2I0)

1

Small h implies more modes (bumpy distribution)
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Mean shift algorithm

+ Mean shift procedure:
» For each point, repeat till convergence
» Compute mean shift vector
» Translate the kernel window by m(x) exp ( |x — Xz'||2>
¢ Simply following the gradient of density

Slide by Y. Ukrainitz & B. Sarel
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Mean shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean shift

CMPSCI 689
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Slide by Y. Ukrainitz & B. Sarel
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Mean shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean shift
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Mean shift
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Mean shift
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Mean shift clustering

+ Cluster all data points in the attraction basin of a mode

¢ Attraction basin is the region for which all trajectories lead to the
same mode — correspond to clusters

Slide by Y. Ukrainitz & B. Sarel
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Mean shift for image segmentation

¢ Feature: L*u*v* color values

¢ Initialize windows at individual feature points

+ Perform mean shift for each window until convergence

+ Merge windows that end up near the same “peak” or mode
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Mean shift clustering results

http.//www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
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Mean shift discussion

¢ Pros:
» Does not assume shape on clusters
» One parameter choice (window size)
» Generic technigue
» Finds multiple modes
¢ Cons:
» Selection of window size
» |s rather expensive: O(DN?2) per iteration
» Does not work well for high-dimensional features

Kegipseraagan Subhransu Maji (UMASS) 29/48



Spectral clustering

K-means Spectral clustering

twocircles, 2 clusters

two circles, 2 clusters (K-means)
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[Shi & Malik ‘00; Ng, Jordan, Weiss NIPS ‘01]
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Spectral clustering

+ Group points based on the links in a graph

A
¢ How do we create the graph?

» Weights on the edges based on similarity between the points
» A common choice is the Gaussian kernel

o~ ]2
wa,j):exp( Ixi — x| )

202

+ One could create
» A fully connected graph

» k-nearest graph (each node is connected only to its k-nearest
neighbors)

slide credit: Alan Fern
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Graph cut

¢ Consider a partition of the graph into two parts A and B
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¢ An intuitive goal is to find a partition that minimizes the cut
» min-cuts in graphs can be computed in polynomial time
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Problem with min-cut

+ The weight of a cut is proportional to number of edges in the cut;
tends to produce small, isolated components.

better cut —

|
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Fig. 1. A case where minimum cut gives a bad partition.
We would like a balanced cut

[Shi & Malik, 2000 PAMI]
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Graphs as matrices

¢ Let W(i, j) denote the matrix of the edge weights
+ The degree of node in the graph is:
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Normalized cut

¢ Intuition: consider the connectivity between the groups relative to the
volume of each group:

_ Cut(4,B)  Cut(4, B)
NCut(4, B) = Vol(4)  Vol(B)

NCut(A, B) = Cut(A, B) (VOl(A) + Vol(B))

Vol(A)Vol(B)

minimized when Vol(A) = Vol(B)
encouraging a balanced cut

+ Unfortunately minimizing normalized cut is NP-Hard even for planar
graphs [Shi & Malik, 00]
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Solving normalized cuts

+ We will formulate an optimization problem

>

4

>

_et W be the similarity matrix
et D be a diagonal matrix with D(i,i) = d(i) — the degree of node |

et x be avector {1, -1IN x() =1 ieA

» The matrix (D-W) is called the Laplacian of the graph

+ With some simplification we can show that the problem of minimizing
normalized cuts can be written as:

"D-w
min NCut(x) = min v — )y
X y yi Dy

subject to: y! D1 = 0
Y(Z) S {17 _b}
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Solving normalized cuts

¢ Normalized cuts objective:

"D-WwW
min NCut(x) = min v — )y
X y yi Dy

subject to: y1 D1 =0
Y(Z) S {17 _b}

+ Relax the integer constraint on y:

min yT(D — W)y, subject to: viDy =1,y D1=0
y

e Same as: (D — W)y = ADy (Generalized eigenvalue problem)

« Note that (D — W)1 = 0, so the first eigenvector is y1 = 1, with the
corresponding eigenvalue of O

¢ The eigenvector corresponding to the second smallest eigenvalue is
the solution to the relaxed problem
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Spectral clustering example

+ Data: Gaussian weighted edges connected to 3 nearest neighbors
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Spectral clustering example

+ Components of the eigenvector corresponding to the second smallest

eigenvalue
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Creating partitions from eigenvalues

+ The eigenvalue is real valued, so to obtain a split you may threshold it

+ How to pick the thres
» Pick the median va
» Choose a thresholo

nold?
ue

that minimizes the normalized cut objective

+ How to create multiple partitions?
» Recursively split each partition
» Compute multiple eigenvalues and cluster them using k-means
= Example: multiple eigenvalues of an image and their gradients

/ /‘/
/ /
| /
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Hierarchical clustering

¢ Organize elements into a hierarchy
¢ Two kinds of methods:

» Agglomerative: a "bottom up” approach where elements start as

individual clusters and clusters are merged as one moves up the
hierarchy

» Divisive: a "top down” approach where elements start as a single
cluster and clusters are split as one moves down the hierarchy
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Agglomerative clustering

+ Agglomerative clustering:
» First merge very similar instances o

® @
. L
» Incrementally build larger clusters out o ® e @-
of smaller clusters e o

¢ Algorithm: * o ©®oo .
» Maintain a set of clusters ® °

» Initially, each instance in its own o o _°®
cluster . o

» Repeat:
= Pick the two “closest” clusters
= Merge them into a new cluster
= Stop when there’s only one cluster left -

| /
¢ Produces not one clustering, but a - ¢ \
family of clusterings represented by a
dendrogram
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Agglomerative clustering

+ How should we define “closest” for clusters with multiple elements?

+ Many options:
» Closest pair: single-link clustering
» Farthest pair: complete-link clustering
» Average of all pairs
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Agglomerative clustering

+ Different choices create different clustering behaviors

Closest pair
(single-link clustering)

Farthest pair
(complete-link clustering)

CMPSCI 689

[Pictures from Thorsten Joachims]
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Summary

¢ Clustering is an example of unsupervised learning
¢ Partitions or hierarchy
¢ Several partitioning algorithms:
» k-means: simple, efficient and often works in practice
= kK-means++ for better initialization

» mean shift: modes of density

= slow but suited for problems with unknown number of clusters with
varying shapes and sizes

» spectral clustering: clustering as graph partitions
= solve (D - W)x = ADx followed by k-means

+ Hierarchical clustering methods:

» Agglomerative or divisive
= single-link, complete-link and average-link

CMPSCI 689 Subhransu Maji (UMASS) 47/48



Slides credit

¢ Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav Gogate,
Carlos Guestrin, Andrew Moore, Dan Klein, James Hays, Alan Fern,
and Tommi Jaakkola

¢ Many images are from the Berkeley segmentation benchmark
» http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds

+ Normalized cuts image segmentation:
» http://www.timotheecour.com/research.html
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