Clustering

Subhransu Maji

CMPSCI 689: Machine Learning

2 April 2015

7 April 2015

So far in the course

- Supervised learning: learning with a teacher
 - You had training data which was (feature, label) pairs and the goal was to learn a mapping from features to labels
- Unsupervised learning: learning without a teacher
 - Only features and no labels
- Why is unsupervised learning useful?
 - Discover hidden structures in the data clustering
 - Visualization dimensionality reduction
 - Iower dimensional features might help learning

today

Clustering

- Basic idea: group together similar instances
- Example: 2D points

Clustering

- Basic idea: group together similar instances
- Example: 2D points

- What could similar mean?
 - One option: small Euclidean distance (squared)

$$\operatorname{dist}(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_2^2$$

 Clustering results are crucially dependent on the measure of similarity (or distance) between points to be clustered

Clustering algorithms

- Simple clustering: organize elements into k groups
 - K-means
 - Mean shift
 - Spectral clustering

- Hierarchical clustering: organize elements into a hierarchy
 - Bottom up agglomerative
 - Top down divisive

• Image segmentation: break up the image into similar regions

image credit: Berkeley segmentation benchmark

Clustering news articles

CMPSCI 689

Clustering queries

Clustering people by space and time

image credit: Pilho Kim

Clustering species (phylogeny)

phylogeny of canid species (dogs, wolves, foxes, jackals, etc)

[K. Lindblad-Toh, Nature 2005]

CMPSCI 689

Clustering using k-means

- Given (x₁, x₂, ..., x_n) partition the n observations into k (≤ n) sets
 S = {S₁, S₂, ..., S_k} so as to minimize the within-cluster sum of squared distances
- The objective is to minimize:

Lloyd's algorithm for k-means

- Initialize k centers by picking k points randomly among all the points
- Repeat till convergence (or max iterations)
 - Assign each point to the nearest center (assignment step)

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} ||\mathbf{x} - \mu_i||^2$$

• Estimate the mean of each group (update step)

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} ||\mathbf{x} - \mu_i||^2$$

k-means in action

step 0

http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/

Properties of the Lloyd's algorithm

- Guaranteed to converge in a finite number of iterations
 - The objective decreases monotonically over time
 - Local minima if the partitions don't change. Since there are finitely many partitions, k-means algorithm must converge
- Running time per iteration
 - Assignment step: O(NKD)
 - Computing cluster mean: O(ND)
- Issues with the algorithm:
 - Worst case running time is super-polynomial in input size
 - No guarantees about global optimality
 - Optimal clustering even for 2 clusters is NP-hard [Aloise et al., 09]

k-means++

k-means++ algorithm

- A way to pick the good initial centers
 - Intuition: spread out the k initial cluster centers
- The algorithm proceeds normally once the centers are initialized
- k-means++ algorithm for initialization:
 - 1. Chose one center uniformly at random among all the points
 - 2.For each point **x**, compute D(**x**), the distance between x and the nearest center that has already been chosen
 - 3.Chose one new data point at random as a new center, using a weighted probability distribution where a point **x** is chosen with a probability proportional to D(**x**)²
 - 4. Repeat Steps 2 and 3 until k centers have been chosen
- [Arthur and Vassilvitskii'07] The approximation quality is O(log k) in expectation

http://en.wikipedia.org/wiki/K-means%2B%2B

k-means for image segmentation

Clustering using density estimation

- One issue with k-means is that it is sometimes hard to pick k
- The mean shift algorithm seeks modes or local maxima of density in the feature space — automatically determines the number of clusters

Small *h* implies more modes (bumpy distribution)

Mean shift algorithm

- Mean shift procedure:
 - For each point, repeat till convergence
 - Compute mean shift vector
 - Translate the kernel window by m(x)
- Simply following the gradient of density _

 $\exp\left(-\frac{||\mathbf{x}-\mathbf{x}_i||^2}{h}\right)$

Slide by Y. Ukrainitz & B. Sarel

20/48

Mean shift clustering

- Cluster all data points in the attraction basin of a mode
- Attraction basin is the region for which all trajectories lead to the same mode — correspond to clusters

Mean shift for image segmentation

- Feature: L*u*v* color values
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Mean shift clustering results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

CMPSCI 689

Mean shift discussion

Pros:

- Does not assume shape on clusters
- One parameter choice (window size)
- Generic technique
- Finds multiple modes
- Cons:
 - Selection of window size
 - ► Is rather expensive: O(DN²) per iteration
 - Does not work well for high-dimensional features

Spectral clustering

[Shi & Malik '00; Ng, Jordan, Weiss NIPS '01]

CMPSCI 689

Spectral clustering

[Figures from Ng, Jordan, Weiss NIPS '01]

CMPSCI 689

Spectral clustering

Group points based on the links in a graph

- How do we create the graph?
 - Weights on the edges based on similarity between the points
 - A common choice is the Gaussian kernel

$$W(i,j) = \exp\left(-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma^2}\right)$$

- One could create
 - A fully connected graph
 - k-nearest graph (each node is connected only to its k-nearest neighbors)

slide credit: Alan Fern

CMPSCI 689

Subhransu Maji (UMASS)

32/48

Graph cut

Consider a partition of the graph into two parts A and B

Cut(A, B) is the weight of all edges that connect the two groups

$$\operatorname{Cut}(A,B) = \sum_{i \in A, j \in B} W(i,j) = 0.3$$

- An intuitive goal is to find a partition that minimizes the cut
 - min-cuts in graphs can be computed in polynomial time

Problem with min-cut

 The weight of a cut is proportional to number of edges in the cut; tends to produce small, isolated components.

Fig. 1. A case where minimum cut gives a bad partition.

We would like a balanced cut

[Shi & Malik, 2000 PAMI]

CMPSCI 689

Graphs as matrices

- ◆ Let *W*(*i*, *j*) denote the matrix of the edge weights
- The degree of node in the graph is:

$$d(i) = \sum_{j} W(i,j)$$

• The volume of a set A is defined as:

$$\operatorname{Vol}(A) = \sum_{i \in A} d(i)$$

CMPSCI 689

Subhransu Maji (UMASS)

35/48

Normalized cut

Intuition: consider the connectivity between the groups relative to the volume of each group:

$$\operatorname{NCut}(A, B) = \frac{\operatorname{Cut}(A, B)}{\operatorname{Vol}(A)} + \frac{\operatorname{Cut}(A, B)}{\operatorname{Vol}(B)}$$

$$\operatorname{NCut}(A, B) = \operatorname{Cut}(A, B) \left(\frac{\operatorname{Vol}(A) + \operatorname{Vol}(B)}{\operatorname{Vol}(A) \operatorname{Vol}(B)} \right)$$

minimized when Vol(A) = Vol(B) encouraging a balanced cut

 Unfortunately minimizing normalized cut is NP-Hard even for planar graphs [Shi & Malik, 00]

Solving normalized cuts

- We will formulate an optimization problem
 - Let W be the similarity matrix
 - Let *D* be a diagonal matrix with D(i,i) = d(i) the degree of node i
 - Let **x** be a vector $\{1, -1\}^N$, $x(i) = 1 \leftrightarrow i \in A$
 - The matrix (D-W) is called the Laplacian of the graph
- With some simplification we can show that the problem of minimizing normalized cuts can be written as:

$$\min_{\mathbf{x}} \operatorname{NCut}(\mathbf{x}) = \min_{\mathbf{y}} \frac{\mathbf{y}^T (D - W) \mathbf{y}}{\mathbf{y}^T D \mathbf{y}}$$

subject to: $\mathbf{y}^T D \mathbf{1} = 0$
 $\mathbf{y}(i) \in \{1, -b\}$

Solving normalized cuts

Normalized cuts objective:

$$\min_{\mathbf{x}} \operatorname{NCut}(\mathbf{x}) = \min_{\mathbf{y}} \frac{\mathbf{y}^T (D - W) \mathbf{y}}{\mathbf{y}^T D \mathbf{y}}$$

subject to:
$$\mathbf{y}^T D \mathbf{1} = 0$$

 $\mathbf{y}(i) \in \{1, -b\}$

Relax the integer constraint on y:

 $\min_{\mathbf{y}} \mathbf{y}^T (D - W) \mathbf{y}; \text{ subject to: } \mathbf{y}^T D \mathbf{y} = 1, \mathbf{y}^T D \mathbf{1} = 0$

• Same as: $(D - W)\mathbf{y} = \lambda D\mathbf{y}$ (Generalized eigenvalue problem)

- Note that $(D W)\mathbf{1} = 0$, so the first eigenvector is $\mathbf{y}_1 = \mathbf{1}$, with the corresponding eigenvalue of 0
- The eigenvector corresponding to the second smallest eigenvalue is the solution to the relaxed problem

Spectral clustering example

Data: Gaussian weighted edges connected to 3 nearest neighbors

Spectral clustering example

 Components of the eigenvector corresponding to the second smallest eigenvalue

Creating partitions from eigenvalues

- The eigenvalue is real valued, so to obtain a split you may threshold it
- How to pick the threshold?
 - Pick the median value
 - Choose a threshold that minimizes the normalized cut objective
- How to create multiple partitions?
 - Recursively split each partition
 - Compute multiple eigenvalues and cluster them using k-means
 - Example: multiple eigenvalues of an image and their gradients

http://ttic.uchicago.edu/~mmaire/papers/pdf/amfm_tpami2011.pdf

Hierarchical clustering

- Organize elements into a hierarchy
- Two kinds of methods:
 - Agglomerative: a "bottom up" approach where elements start as individual clusters and clusters are merged as one moves up the hierarchy
 - Divisive: a "top down" approach where elements start as a single cluster and clusters are split as one moves down the hierarchy

Agglomerative clustering

Agglomerative clustering:

- First merge very similar instances
- Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two "closest" clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Agglomerative clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair: single-link clustering
 - Farthest pair: complete-link clustering
 - Average of all pairs

Agglomerative clustering

- Different choices create different clustering behaviors
 - Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

[Pictures from Thorsten Joachims]

Summary

- Clustering is an example of unsupervised learning
- Partitions or hierarchy
- Several partitioning algorithms:
 - k-means: simple, efficient and often works in practice
 - k-means++ for better initialization
 - mean shift: modes of density
 - slow but suited for problems with unknown number of clusters with varying shapes and sizes
 - spectral clustering: clustering as graph partitions
 - → solve (**D W**)x = λ **D**x followed by k-means
- Hierarchical clustering methods:
 - Agglomerative or divisive
 - single-link, complete-link and average-link

Slides credit

- Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein, James Hays, Alan Fern, and Tommi Jaakkola
- Many images are from the Berkeley segmentation benchmark
 - http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds
- Normalized cuts image segmentation:
 - http://www.timotheecour.com/research.html