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¢ Mini-project 2 due April 7, in class

» iImplement multi-class reductions, naive bayes, kernel perceptron,

multi-class logistic regression and two layer neural networks

» training set:
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INn class

» one page describing the project topic, goals, etc

» list your team members (2+)

J

¢ Project proposals due April 2

» project presentations: April 23 and 27

» final report: May 3
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Kag g Ie https://www.kaggle.com/competitions

Competition Details » Getthe Data » Make a submission
Host Competitions

ldentify signs of diabetic retinopathy in eye
Images

Welcome to Kaggle, the leading LhE
platform for predictive modeling

competitions. Enter Diabetic retinopathy is the leading cause of blindness in the working-age
population of the developed world. It is estimated to affect over 93 million
New to Data Sclence? Visit our Wiki » Find a competition &

Leamn about hosting a competition » download the training people.
In-Class & Research competitions » data. You don't need

. The US Center for Disease Control and Prevention
software/skills to sub

estimates that 29.1 million people in the US have
diabetes and the World Health Organization
estimates that 347 million people have the disease
worldwide. Diabetic Retinopathy (DR) is an eye
disease associated with long-standing diabetes.
Around 40% to 45% of Americans with diabetes
have some stage of the disease. Progression to
vision impairment can be slowed or averted if DR is
detected in time, however this can be difficult as
the disease often shows few symptoms until it is
too late to provide effective treatment.

Active Competitions

Diabetic Retinopathy
Detection

Identify signs of diabetic retint
images

All Competitions

16 found, 16 active

Predict annual restaurant sale

Q Search competitions objective measurements

Currently, detecting DR is a time-consuming and manual process that requires a
trained clinician to examine and evaluate digital color fundus photographs of the

@ All competitions ' | Mic"‘f”ft !""a'“’a'e retina. By the time human readers submit their reviews, often a day or two later, the
“)Enterable / ;(I):sss)uﬁcatlon Challen  jelayed results lead to lost follow up, miscommunication, and delayed treatment.

Classify malware into families based on file
content and characteristics

Status

# Active

Completed () Manla2015 $15,000 341 14 days
-1 3 Predict the 2015 NCAA Basketball

March Machine Learning
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Feature mapping

¢ Learn non-linear classifiers by mapping features

L Y -

(x1,x2)|—> (21'22’23)= (xf'\/;x1x2’x§)

Can we learn the XOR function with this mapping?

CMPSCI 689 Subhransu Maji (UMASS) 4/27



Quadratic feature map

o let, x = |x1,20,...,2D]
¢ Then the quadratic feature map is defined as:

o(x) =[1,vV2x1,V2x9,...,V2xp,

2

L1, L1L2,L1L3...,T1T P,
2
L2X1y, Loy, L2X3 ..., T2 D,
)
2
TpT1,TDL2, TDT3 ..., T D]

+ Contains all single and pairwise terms

¢ There are repetitions, e.g., X1X2 and x2X1, but hopefully the learning
algorithm can handle redundant features
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Drawbacks of feature mapping

¢ Computational

» Suppose training time is linear in feature dimension, quadratic
feature map squares the training time

¢ Memory

» Quadratic feature map squares the memory required to store the
training data

+ Statistical
» Quadoratic feature mapping squares the number of parameters
» For now lets assume that regularization will deal with overtitting
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Quadratic kernel

¢ The dot product between feature maps of x and z is:

gb(X)Tgb(z) — 1+ 2x121 +22929,...,2xp2p + x%z% + X1L92120 + ...+ 1T pDZ1ZD + ...

2 _2
... TITPT1ZpZ1 + TDT2Zp22 + ...+ TpZp

=142 (Z mzsz) + Z Ly j2i2
0 ]
=1+2(x"z) + (x"'z)?
— (1 + XTZ)2
= K(x,2) quadratic kernel

¢ Thus, we can compute d(x)'d(z2) in almost the same time as needed
to compute x'z (one extra addition and multiplication)

+ We will rewrite various algorithms using only dot products (or kernel
evaluations), and not explicit features
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Perceptron revisited

Input: training data (x1,v1), (X2, Y2), - - -5 (Xn, Yn)
feature map ¢

Perceptron training algorithm
¢ Initialize w < [0, ..., 0]
o foriter=1,....,T
»fori=1,...n
e predict according to the current model

. <( +1 if wligp(x;) >0
yz - _1

o If Y; = :&z‘, no change
° else, W < W + y;p(X;) /

Obtained by replacing x by ¢(x)
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Properties of the weight vector

¢ Linear algebra recap:
» Let U be set of vectors in R®, i.e., U ={usu, . up}and uie R°

» Span(U) is the set of all vectors that can be represented as >;au;,
such that a; € R uXv

» Null(U) is everything that is left i.e., R” \ Span(U) P

Perceptron representer theorem: During the run of the perceptron
training algorithm, the weight vector w is always in the span of ¢(x1),

d(X1), ..., O(Xp)

W =), a;P(x;) updates @y < a; + y;

wio(z) = (3, ip(xi))" d(z) = 3, aid(x:) T ¢(2)
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Kernelized perceptron

Input: training data (x1,v1), (X2, Y2), - - -5 (Xn, Yn)
feature map ¢

Kernelized perceptron training algorithm
¢ Initialize o < [0,0,...,0]
o foriter=1,....,T
»fori=1,...n
e predict according to the current model

U <( _|_1 if Zn O‘n¢(xn)T¢(Xi) > 0
=191 _1 otherwise

\

o If Y; = Z)i, no change
e else, a; = a; + Y;

v
o(x)Té(z) = (1 +xTz)? polynomial kernel of degree p
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Support vector machines

+ Kernels existed long before SVMs, but were popularized by them
¢ Does the representer theorem hold for SVMs?
+ Recall that the objective function of an SVM is:

1
m“i’n §HWH2 +C zn: max(0,1 — y, W’ x,,)

OLet,W:WH—I—WJ_

only wy affects classification norm decomposes
T, __ T T T
WX = (W) +WL) X ww = (W) +wp) (W) +wWL)
= foi -+ wfxz- = WfWH -+ WIWJ_
= foi > wfwn
Hence, w € Span({x1,X2,...,Xp})
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Kernel kK-means

¢ Initialize k centers by picking k points randomly
¢ Repeat till convergence (or max iterations)
» Assign each point to the nearest center (assignment step)

k
argmin } > [[¢(x) — il

1=1 x€S5;

» Estimate the mean of each group (update step)

argmmz S o H2
1=1 x€ES;
|S| 2 #x)

XES;

¢ Representer theorem is easy here — <

¢ Exercise: show how to compute | \gb(x) — ,uiHQ using dot products

CMPSCI 689 Subhransu Maji (UMASS) 12/37



What makes a kernel?

¢ A kernel is a mapping K: XxX —R
¢ Functions that can be written as dot products are valid kernels

K(x,2z) = ¢(x)" ¢(z)

» Examples: polynomial kernel K(dpoly) (x,2) = (1 +x'2)”

Alternate characterization of a kernel

¢ A function K: XxX —R is a kernel if Kis positive semi-definite (psd)
¢ This property is also called as Mercer’s condition

¢ This means that for all functions f that are squared mtegrable except
the zero function, the following property holds:

//f z)f(z)dzdx > 0 /f )?dx < 00
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Why is this characterization useful?

¢ We can prove some properties about kernels that are otherwise hard
to prove

¢ [heorem: If Ki and Ko are kernels, then K1 + K2 is also a kernel
¢ Proof:

//f dzdx—//f (K1 (x,2) + Ka(x,2)) f(z)dzdx
://fXlez dzdx+//f )\ Ko (x, 7) f (2) dzdx

>0+0

+ More generally if K1, Ko,..., Knare kernels then 2 .aiKj with a; =0, is a
also a kernel

+ Can build new kernels by linearly combining existing kernels
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Why is this characterization useful?

¢ We can show that the Gaussian function is a kernel
» Also called as radial basis function (RBF) kernel

K(rbf) (Xa Z) — eXp (—WHX — ZHQ)

¢ Lets look at the classification function using a SVM with RBF kernel:

Output
neuron

f(z) = Z i K rpr) (X, 2)
¢ vgli’ﬁi X
— Zai exp (—’}/HXZ' - ZHQ)

Linear
projection

¢ This is similar to a two layer network with the RBF as the link function

¢ Gaussian kernels are examples of universal kernels — they can
approximate any function in the limit as training data goes to infinity
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Kernels In practice

¢ Feature mapping via kernels often improves performance
o MNIST digits test error:

i | F eSS/ 79664\

4o, SN Pt 6757¢7634%¢

o | 213991 X248
» 1.1% SVM polynomial (d=4) 7

L 71 90 § % 9 Y

60,000 training examples v 2l ¥idy 640

189 £ 6883 ) 99

A 22ALLD¥4dFO

DA D Q7868657

Ol el bR« I

728098 b/

http://yann.lecun.com/exdb/mnist/
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Kernels over general structures

+ Kernels can be defined over any pair of inputs such as strings, trees
and graphs!

¢ Kernel over trees:

__ number of common
Kt N T A — subtrees

http://en.wikipedia.org/wiki/Tree_kernel

» This can be computed efficiently using dynamic programming
» Can be used with SVMs, perceptrons, k-means, etc
¢ For strings number of common substrings is a kernel

¢ Graph kernels that measure graph similarity (e.g. number of common
subgraphs) have been used to predict toxicity of chemical structures
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Kernels for computer vision

+ Histogram intersection kernel between two histograms a and b

Kmin(a,b) me a;,b;) a; >0 b; >0

o=
oS
a
o.2
(=)
1 =2 = -1 = L= 7 = t=] 10
o=
oS
O <3
o2
(=]
1 =2 = -3 = = 7 = =] 10
oS
e o6 |—
min(a, s
o2
| [ 1 | E—

¢ Introduced by Swain and Ballard 1991 to compare color histograms
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Kernel classifiers tradeoffs

Non-linear Kernel

Evaluation time

Linear Kernel

hz) =w'z

Accuracy

Linear: O (feature dimension)
Non Linear: O (N X feature dimension)
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Kernel classification function

h(Z) — Z OéiK(XZ', Z) — Z 8% (Z IIliIl(Cl?ij, Zj))
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Kernel classification function

N N D
— Z()&iK(Xi,Z) — ZCVZ' (Z IIliIl(CEij,Zj))
1=1 1=1 1=1

Key insight: additive property

— Z QL (Z min(a:'ij, Z]))

=1
D
— Z (Za@ min(x;;, 2; )
J=1 \=l1
D N
=) h(z hj(z;) = » a;min(z;j, z;)
j=1 i=1
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Kernel classification function

h(Z) — Z OéiK(XZ', Z) — Z 8% (Z IIliIl(Cl?ij, Zj))

Algorithm 1

hj(zj) = Z (i Min (T, 2;) O(N)
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Kernel classification function
N N D
h(Z) — Z OéiK(XZ', Z) — Z 8% Zmin(xij, Zj)
1=1 1=1 71=1

[Maiji et al. PAMI 13]

Algorithm 1

N JE—

hi(zj) = § o; min(x;;, ;) M\

1=1

N N
= > am+ ) oz O(log N)

1:145<Zj V5 =2
Sort the support vector values in To evaluate, find the position of z; the
each coordinate, and pre-compute sorted list of support vector x;.This can be
these sums for each rank. done in O(log N) time using binary search.
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Kernel classification function
N N D
h(Z) — Z OéiK(XZ', Z) — Z 8% Zmin(xij, Zj)
1=1 1=1 71=1

[Maiji et al. PAMI 13]

Algorithm 2
N
hj(z;) = » a;min(z;j, z;) ,\3@5\
1=1
N N
=3 a3 4l omexr
i:CIZr,;j<Zj i:a?ijZZj

O(1)

For many problems h; is smooth (blue plot). Hence,

we can approximate it with fewer uniformly spaced
segments (red plot). This saves time and space!
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Kernel classification function

h(Z) — Z OéiK(XZ', Z) — Z 8% (Z IIliIl(Cl?ij, Zj))

[Maiji et al. PAMI 13]

Algorithm 2

K(X, Z) — Z kZ(CBZ, Zz)

additive kernels

Intersection k(a,b) = min(a, b)

O(1)
Chi-squared k(a,b) = Qj_bb
a

b b
Jensen-Shannon k(a,b) = alog (al‘ > +blog (CL + >
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Linear and intersection kernel SVM

Using histograms of oriented gradients feature:

Dataset Measure Linear SVM |IK SVM Speedup

INRIA pedestrians RecaII@ZFPPI 78.9 86.6 2594 X
 DCpedestrians  Accuracy 722 890  2253X
Caltech101, 15 examples ~ Accuracy 388 501 37 X
Caltech101, 30 examples  Accuracy 443 566 62 X
""""""""""""""""""""" MNIST digts ~~ Emor 144 077  2500X
UIUC cars (Single Scale) Precision@ EER 898 985 65X

On average more accurate than linear and 100-1000x faster than
standard kernel classifier. Similar idea can be applied to training as well.
Research question: when can we approximate kernels efficiently?
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Slides credit

¢ Some of the slides are based on CIML book by Hal Daume Il

+ Experiments on various datasets: “Efficient Classification for Additive
Kernel SVMs”, S. Maji, A. C. Berg and J. Malik, PAMI, Jan 2013

¢ Some resources:
» LIBSVM: kernel SVM classitier training and testing
= http:.//www.csie.ntu.edu.tw/~cjlin/libsvm/
» LIBLINEAR: fast linear classitier training
= http://www.csie.ntu.edu.tw/~cjlin/liblinear/
» LIBSPLINE: fast additive kernel training and testing
= https://github.com/msubhransu/libspline
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