
Subhransu Maji

10 March 2015

CMPSCI 689: Machine Learning

12 March 2015

Neural Networks

Subhransu Maji (UMASS)CMPSCI 689 /36

One of the main weakness of linear models is that they are linear!
Decision trees and kNN classifiers can model non-linear boundaries!
Neural networks are yet another non-linear classifier!
Take the biological inspiration further by chaining together perceptrons!
Allows us to use what we learned about linear models:!
‣ Loss functions, regularization, optimization

Motivation

2

neuron

Subhransu Maji (UMASS)CMPSCI 689 /36

Two-layer network architecture

3

y = vTh

hi = f(wT
i x)

link function

tanh(x) =
1� e

�2x

1 + e

�2x

Non-linearity is important

Subhransu Maji (UMASS)CMPSCI 689 /36

We saw that a perceptron cannot learn the XOR function!
Exercise: come up with the parameters of a two layer network with
two hidden units that computes the XOR function!
‣ Here is a table with a bias feature for XOR

The XOR function

4

Do we gain anything beyond two layers?

Subhransu Maji (UMASS)CMPSCI 689 /36

Theorem [Kurt Hornik et al., 1989]: Let F be a continuous function
on a bounded subset of D-dimensional space. Then there exists a
two-layer network F with finite number of hidden units that
approximates F ̂arbitrarily well. Namely, for all x in the domain of F,
|F(x)-F(̂x)| < ε!
!

!
Colloquially “a two-layer network can approximate any function”!
‣ This is true for arbitrary link function
!

Going from one to two layers dramatically improves the representation
power of the network

Expressive power of a two-layer network

5

Subhransu Maji (UMASS)CMPSCI 689 /36

D dimensional data with K hidden units has(D+2)K+1 parameters!
‣ (D+1)K in the first layer (1 for the bias) and K+1 in the second layer
With N training examples, set the number of hidden units K ~ N/D to
keep the number of parameters comparable to size of training data!
K is both a form of regularization and inductive bias!
Training and test error vs. K

How many hidden units?

6

Subhransu Maji (UMASS)CMPSCI 689 /36

Optimization framework:!
!
!
!
!
Loss minimization: replace squared-loss with any other!
Regularization:!
‣ Traditionally NN are not regularized (early stopping instead)
‣ But you can add a regularization (e.g. l2-norm of the weights)
!
Optimization by gradient descent!
‣ Highly non-convex problem so no guarantees about optimality

Training a two-layer network

7

min
W,v

X

n

1

2

yn �

X

i

vif(w
T
i xn)

!2

Subhransu Maji (UMASS)CMPSCI 689 /36

Optimization framework:!
!
!
!
!
!
!
!
!
Computing gradients: second layer

Training a two-layer network

8

min
W,v

X

n

1

2

yn �

X

i

vif(w
T
i xn)

!2

dLn

dv
= �

�
yn � vThn

�
hn

hi,n = f(wT
i xn)min

W,v

X

n

1

2

�
yn � vThn

�2
or equivalently,

least-squares regression

Subhransu Maji (UMASS)CMPSCI 689 /36

Optimization framework:!
!
!
!
!
!
!
!
!
Computing gradients: first layer!
‣ Chain rule of derivatives

Training a two-layer network

9

min
W,v

X

n

1

2

yn �

X

i

vif(w
T
i xn)

!2

hi,n = f(wT
i xn)min

W,v

X

n

1

2

�
yn � vThn

�2

dLn

dwi
= �

�
yn � vThn

�
vif

0(wT
i xn)xn

also called as back-propagation

dLn

dwi
=

X

j

dLn

dhj

dhj

dwi

O if i 6= j

or equivalently,

Subhransu Maji (UMASS)CMPSCI 689 /36

Easy to get gradients wrong!!
‣ One strategy is to learn v by fixing W (least-squares) and then

learn W by fixing v and iterate between the two steps.
Use online gradients (or stochastic gradients)!
!
!
!
!
Learning rate: start with a high value and reduce it when the
validation error stops decreasing
Momentum: move out small local minima
‣ Usually set to a high value: β = 0.9

Practical issues: gradient descent

10

dL

dw
=

X

n

dLn

dw
batch online

w w � ⌘
dLn

dw

�w(t) = ��w(t�1) + (1� �)

✓
�⌘

dLn

dw(t)

◆

w(t+1) wt +�w(t)

Subhransu Maji (UMASS)CMPSCI 689 /36

Initialization didn’t matter for linear models!
‣ Guaranteed convergence to global minima as long as step size is

suitably chosen since the objective is convex
Neural networks are sensitive to initialization!
‣ Many local minima
‣ Symmetries: reorder the hidden units and change the weights

accordingly to get another network that produces identical outputs
Train multiple networks with randomly initialized weights

Practical issues: initialization

11

pick the best

Subhransu Maji (UMASS)CMPSCI 689 /36

The architecture generalizes to any directed acyclic graph (DAG)!
‣ For example a multi-layer network
‣ One can order the vertices in a DAG such that all edges go from

left to right (topological sorting)

Beyond two layers

12

gradients: backward propagation

prediction: forward propagation

Subhransu Maji (UMASS)CMPSCI 689 /36

Why train deeper networks?!
We will borrow ideas from theoretical computer science!
‣ A boolean circuit is a DAG where each node is either an input, an

AND gate, an OR gate, or a NOT gate. One of these is designated
as an output gate.

‣ Circuit complexity of a boolean function f is the size of the smallest
circuit (i.e., with the fewest nodes) that can compute f.
!

The parity function: the number of 1s is even or odd!

!
!
!
[Håstad, 1987] A depth-k circuit requires to compute
the parity function of n inputs

Breadth vs. depth

13

exp

⇣
n

1
k�1

⌘

parity(x) =

X

d

xd

!
mod 2

Subhransu Maji (UMASS)CMPSCI 689 /36

Why not train deeper networks?!
Selecting the architecture is daunting!
‣ How many hidden layers
‣ How many units per hidden layer
Vanishing gradients!
‣ Gradients shrink as one moves away from the output layer
‣ Convergence is slow
Training deep networks is an active area of research!
‣ Layer-wise initialization (perhaps using unsupervised data)
‣ Engineering: GPUs to train on massive labelled datasets

Breadth vs. depth

14

Subhransu Maji (UMASS)CMPSCI 689 /36

Can a two-layer network learn a kNN classifier?!
Replace the link function with a Gaussian!
!
!
The output has the form:!
!
!
!
By setting wi as xi and vi as yi for the ith hidden node, we obtain a!
‣ distance-weighted kNN classifier, and equivalently a
‣ kernel density classifier with a Gaussian kernel.
The advantage is that we can learn the centers (wi), widths (γ) and
weights (vi) by back-propagation

Two-layer network as kNN classifier

15

f(x) =
X

i

vi exp
�
��(wi � x)

2
�

hi = tanh(wT
i x) hi = exp

�
��(wi � x)

2
�

Subhransu Maji (UMASS)CMPSCI 689 /36

Images are not just a collection of pixels!
‣ Lots of local structure: edges, corners, etc
‣ These statistics are translation invariant
The convolution operation:

Convolutional neural networks

16

absolute value of the output of!
convolution of the image and filter

image

filter: horizontal edge

Subhransu Maji (UMASS)CMPSCI 689 /36

Images are not just a collection of pixels!
‣ Lots of local structure: edges, corners, etc
‣ These statistics are translation invariant
The convolution operation:

Convolutional neural networks

17

absolute value of the output of!
convolution of the image and filter

image

filter: vertical edge

Subhransu Maji (UMASS)CMPSCI 689 /36

Images are not just a collection of pixels!
‣ Lots of local structure: edges, corners, etc
‣ These statistics are translation invariant
The pooling operation: subsample the output!
‣ Invariance to small shifts
‣ Options: max, sum Parameters: window size, stride

Convolutional neural networks

18

max
…

… max-pooling

Subhransu Maji (UMASS)CMPSCI 689 /36

A CNN unit contains the following layers:!
1.Convolutional layer containing a set of filters
2.Pooling layer
3.Non-linearity
Deep CNN: a stack of multiple CNN units!
‣ Inspired by the human visual system (V1, V2, V3 ….)

Convolutional neural networks

19

Hubel and Weisel, 1968!
Structure of V1!

“simple” cells: edge detectors

Subhransu Maji (UMASS)CMPSCI 689 /36

C1: Convolutional layer with 6 filters of size 5x5!
Output: 6x28x28!
Number of parameters: (5x5+1)*6 = 156!
Connections: (5x5+1)x(6x28x28) = 122304!
Connections in a fully connected network: (32x32+1)x(6X28x28)

Example: LeNet5

20

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage

LeCun 98

Subhransu Maji (UMASS)CMPSCI 689 /36

S1: Subsampling layer!
Subsample by taking the sum of non-overlapping 2x2 windows!
‣ Multiply the sum by a constant and add bias
Number of parameters: 2x6=12!
Pass the output through a sigmoid non-linearity!
Output: 6x14x14

Example: LeNet5

21

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage

Subhransu Maji (UMASS)CMPSCI 689 /36

C3: Convolutional layer with 16 filters of size 6x6!
Each is connected to a subset: !
Number of parameters: 1,516!
Number of connections: 151,600!
Output: 16x10x10

Example: LeNet5

22

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage

Subhransu Maji (UMASS)CMPSCI 689 /36

S4: Subsampling layer!
Subsample by taking the sum of non-overlapping 2x2 windows!
‣ Multiply by a constant and add bias
Number of parameters: 2x16 = 32!
Pass the output through a sigmoid non-linearity!
Output: 16x5x5

Example: LeNet5

23

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage

Subhransu Maji (UMASS)CMPSCI 689 /36

C5: Convolutional layer with 120 outputs of size 1x1!
Each unit in C5 is connected to all inputs in S4!
Number of parameters: (16x5x5+1)*120 = 48120

Example: LeNet5

24

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage

Subhransu Maji (UMASS)CMPSCI 689 /36

F6: fully connected layer !
Output: 1x1x84!
Number of parameters: (120+1)*84 = 10164!
!
OUTPUT: 10 Euclidean RBF units (one for each digit class)

Example: LeNet5

25

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage

Subhransu Maji (UMASS)CMPSCI 689 /36

MNIST dataset

26

http://yann.lecun.com/exdb/mnist/
3-layer NN, 300+100 HU [distortions] !

Test error: 2.5%

http://yann.lecun.com/exdb/mnist/

Subhransu Maji (UMASS)CMPSCI 689 /36

MNIST dataset: errors on the test set

27

Subhransu Maji (UMASS)CMPSCI 689 /36

Similar framework to LeCun’98 with some differences:
‣ Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
‣ More data (106 vs. 103 images) — ImageNet dataset [Deng et al.]
‣ GPU implementation (50x speedup over CPU) ~ 2 weeks to train
‣ Some twists: Dropout regularization, ReLU max(0,x)
Won the ImageNet challenge in 2012 by a large margin!

ImageNet Challenge 2012

28

Krizhevsky, I. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Subhransu Maji (UMASS)CMPSCI 689 /36

Layer 1: Learned filters

29

similar to “edge” and “blob” detectors

Subhransu Maji (UMASS)CMPSCI 689 /3630

• Patches from validation images that give maximal activation of a given feature map

Layer 1: Top-9 Patches

Subhransu Maji (UMASS)CMPSCI 689 /3631

Layer 2: Top-9 Patches

Subhransu Maji (UMASS)CMPSCI 689 /3632

Layer 3: Top-9 Patches

Subhransu Maji (UMASS)CMPSCI 689 /3633

Layer 4: Top-9 Patches

Subhransu Maji (UMASS)CMPSCI 689 /3634

Layer 5: Top-9 Patches

Subhransu Maji (UMASS)CMPSCI 689 /36

Motivation: non-linearity!
Ingredients of a neural network!
‣ hidden units, link functions
Training by back-propagation!
‣ random initialization, chain rule, stochastic gradients, momentum
‣ Practical issues: learning, network architecture
Theoretical properties:!
‣ A two-layer network is a universal function approximator
‣ However, deeper networks can be more efficient at approximating

certain functions
Convolutional neural networks:!
‣ Good for vision problems where inputs have local structure
‣ Shared structure of weights leads to significantly fewer parameters

Summary!

35

Subhransu Maji (UMASS)CMPSCI 689 /36

Multilayer neural network figure source:!
‣ http://www.ibimapublishing.com/journals/CIBIMA/2012/525995/525995.html
Cat image: http://www.playbuzz.com/abbeymcneill10/which-cat-breed-are-you!
More about the structure of the visual processing system!
‣ http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html!
ImageNet visualization slides are by Rob Fergus @ NYU/Facebook
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf!
LeNet5 figure from: http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf!
Chain rule of derivatives: http://en.wikipedia.org/wiki/Chain_rule

Slides credit

36

http://www.ibimapublishing.com/journals/CIBIMA/2012/525995/525995.html
http://www.playbuzz.com/abbeymcneill10/which-cat-breed-are-you
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://en.wikipedia.org/wiki/Chain_rule

