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One of the main weakness of linear models is that they are linear!
Decision trees and kNN classifiers can model non-linear boundaries!
Neural networks are yet another non-linear classifier!
Take the biological inspiration further by chaining together perceptrons!
Allows us to use what we learned about linear models:!
‣ Loss functions, regularization, optimization

Motivation
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Two-layer network architecture

3

y = vTh

hi = f(wT
i x)

link function

tanh(x) =
1� e

�2x

1 + e

�2x

Non-linearity is important



Subhransu Maji (UMASS)CMPSCI 689 /36

We saw that a perceptron cannot learn the XOR function!
Exercise: come up with the parameters of a two layer network with 
two hidden units that computes the XOR function!
‣ Here is a table with a bias feature for XOR

The XOR function
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Do we gain anything beyond two layers?
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Theorem [Kurt Hornik et al., 1989]: Let F be a continuous function 
on a bounded subset of D-dimensional space. Then there exists a 
two-layer network F with finite number of hidden units that 
approximates F ̂arbitrarily well. Namely, for all x in the domain of F,       
|F(x)-F(̂x)| < ε!
!

!
Colloquially “a two-layer network can approximate any function”!
‣ This is true for arbitrary link function 
!

Going from one to two layers dramatically improves the representation 
power of the network

Expressive power of a two-layer network
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D dimensional data with K hidden units has(D+2)K+1 parameters!
‣ (D+1)K in the first layer (1 for the bias) and K+1 in the second layer 
With N training examples, set the number of hidden units K ~ N/D to 
keep the number of parameters comparable to size of training data!
K is both a form of regularization and inductive bias!
Training and test error vs. K

How many hidden units?
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Optimization framework:!
!
!
!
!
Loss minimization: replace squared-loss with any other!
Regularization:!
‣ Traditionally NN are not regularized (early stopping instead) 
‣ But you can add a regularization (e.g. l2-norm of the weights) 
!
Optimization by gradient descent!
‣ Highly non-convex problem so no guarantees about optimality

Training a two-layer network
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Optimization framework:!
!
!
!
!
!
!
!
!
Computing gradients: second layer

Training a two-layer network
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Optimization framework:!
!
!
!
!
!
!
!
!
Computing gradients: first layer!
‣ Chain rule of derivatives

Training a two-layer network
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Easy to get gradients wrong!!
‣ One strategy is to learn v by fixing W  (least-squares) and then 

learn W by fixing v and iterate between the two steps. 
Use online gradients (or stochastic gradients)!
!
!
!
!
Learning rate: start with a high value and reduce it when the 
validation error stops decreasing 
Momentum: move out small local minima 
‣ Usually set to a high value: β = 0.9 

Practical issues: gradient descent
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Initialization didn’t matter for linear models!
‣ Guaranteed convergence to global minima as long as step size is 

suitably chosen since the objective is convex 
Neural networks are sensitive to initialization!
‣ Many local minima 
‣ Symmetries: reorder the hidden units and change the weights 

accordingly to get another network that produces identical outputs 
Train multiple networks with randomly initialized weights

Practical issues: initialization
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pick the best
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The architecture generalizes to any directed acyclic graph (DAG)!
‣ For example a multi-layer network 
‣ One can order the vertices in a DAG such that all edges go from 

left to right (topological sorting)

Beyond two layers
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gradients: backward propagation

prediction: forward propagation
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Why train deeper networks?!
We will borrow ideas from theoretical computer science!
‣ A boolean circuit is a DAG where each node is either an input, an 

AND gate, an OR gate, or a NOT gate. One of these is designated 
as an output gate. 

‣ Circuit complexity of a boolean function f is the size of the smallest 
circuit (i.e., with the fewest nodes) that can compute f. 
!

The parity function: the number of 1s is even or odd!

!
!
!
[Håstad, 1987] A depth-k circuit requires                        to compute 
the parity function of n inputs

Breadth vs. depth
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Why not train deeper networks?!
Selecting the architecture is daunting!
‣ How many hidden layers 
‣ How many units per hidden layer 
Vanishing gradients!
‣ Gradients shrink as one moves away from the output layer 
‣ Convergence is slow 
Training deep networks is an active area of research!
‣ Layer-wise initialization (perhaps using unsupervised data) 
‣ Engineering: GPUs to train on massive labelled datasets

Breadth vs. depth
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Can a two-layer network learn a kNN classifier?!
Replace the link function with a Gaussian!
!
!
The output has the form:!
!
!
!
By setting wi as xi and vi as yi for the ith hidden node, we obtain a!
‣ distance-weighted kNN classifier, and equivalently a  
‣ kernel density classifier with a Gaussian kernel. 
The advantage is that we can learn the centers (wi), widths (γ) and 
weights (vi) by back-propagation

Two-layer network as kNN classifier
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Images are not just a collection of pixels!
‣ Lots of local structure: edges, corners, etc 
‣ These statistics are translation invariant 
The convolution operation:

Convolutional neural networks
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absolute value of the output of!
convolution of the image and filter

image

filter: horizontal edge
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Images are not just a collection of pixels!
‣ Lots of local structure: edges, corners, etc 
‣ These statistics are translation invariant 
The convolution operation:

Convolutional neural networks
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absolute value of the output of!
convolution of the image and filter

image

filter: vertical edge
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Images are not just a collection of pixels!
‣ Lots of local structure: edges, corners, etc 
‣ These statistics are translation invariant 
The pooling operation: subsample the output!
‣ Invariance to small shifts 
‣ Options: max, sum        Parameters: window size, stride

Convolutional neural networks
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A CNN unit contains the following layers:!
1.Convolutional layer containing a set of filters 
2.Pooling layer  
3.Non-linearity 
Deep CNN: a stack of multiple CNN units!
‣ Inspired by the human visual system (V1, V2, V3 ….)

Convolutional neural networks
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Hubel and Weisel, 1968!
Structure of V1!

“simple” cells: edge detectors
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C1: Convolutional layer with 6 filters of size 5x5!
Output: 6x28x28!
Number of parameters: (5x5+1)*6 = 156!
Connections: (5x5+1)x(6x28x28) = 122304!
Connections in a fully connected network: (32x32+1)x(6X28x28)

Example: LeNet5
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6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage

LeCun 98
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S1: Subsampling layer!
Subsample by taking the sum of non-overlapping 2x2 windows!
‣ Multiply the sum by a constant and add bias 
Number of parameters: 2x6=12!
Pass the output through a sigmoid non-linearity!
Output: 6x14x14

Example: LeNet5
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6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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C3: Convolutional layer with 16 filters of size 6x6!
Each is connected to a subset: !
Number of parameters: 1,516!
Number of connections: 151,600!
Output: 16x10x10

Example: LeNet5
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6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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S4: Subsampling layer!
Subsample by taking the sum of non-overlapping 2x2 windows!
‣ Multiply by a constant and add bias 
Number of parameters: 2x16 = 32!
Pass the output through a sigmoid non-linearity!
Output: 16x5x5

Example: LeNet5
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6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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C5: Convolutional layer with 120 outputs of size 1x1!
Each unit in C5 is connected to all inputs in S4!
Number of parameters: (16x5x5+1)*120 = 48120

Example: LeNet5
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6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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F6: fully connected layer !
Output: 1x1x84!
Number of parameters: (120+1)*84 = 10164!
!
OUTPUT: 10 Euclidean RBF units (one for each digit class)

Example: LeNet5
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6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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MNIST dataset
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http://yann.lecun.com/exdb/mnist/
3-layer NN, 300+100 HU [distortions] !

Test error: 2.5%

http://yann.lecun.com/exdb/mnist/
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MNIST dataset: errors on the test set
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Similar framework to LeCun’98 with some differences: 
‣ Bigger model (7 hidden layers, 650,000 units, 60,000,000 params) 
‣ More data (106 vs. 103 images) — ImageNet dataset [Deng et al.] 
‣ GPU implementation (50x speedup over CPU) ~ 2 weeks to train 
‣ Some twists: Dropout regularization, ReLU max(0,x) 
Won the ImageNet challenge in 2012 by a large margin!

ImageNet Challenge 2012
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Krizhevsky, I. Sutskever, and G. Hinton,  
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


Subhransu Maji (UMASS)CMPSCI 689 /36

Layer 1: Learned filters
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similar to “edge” and “blob” detectors
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• Patches from validation images that give maximal activation of a given feature map 

Layer 1: Top-9 Patches
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Layer 2: Top-9 Patches
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Layer 3: Top-9 Patches
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Layer 4: Top-9 Patches
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Layer 5: Top-9 Patches
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Motivation: non-linearity!
Ingredients of a neural network!
‣ hidden units, link functions 
Training by back-propagation!
‣ random initialization, chain rule, stochastic gradients, momentum 
‣ Practical issues: learning, network architecture 
Theoretical properties:!
‣ A two-layer network is a universal function approximator 
‣ However, deeper networks can be more efficient at approximating 

certain functions 
Convolutional neural networks:!
‣ Good for vision problems where inputs have local structure 
‣ Shared structure of weights leads to significantly fewer parameters

Summary!
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Multilayer neural network figure source:!
‣ http://www.ibimapublishing.com/journals/CIBIMA/2012/525995/525995.html 
Cat image: http://www.playbuzz.com/abbeymcneill10/which-cat-breed-are-you!
More about the structure of the visual processing system!
‣ http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html!
ImageNet visualization slides are by Rob Fergus @ NYU/Facebook 
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf!
LeNet5 figure from: http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf!
Chain rule of derivatives: http://en.wikipedia.org/wiki/Chain_rule

Slides credit
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