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Motivation

+ One of the main weakness of linear models is that they are linear
¢ Decision trees and kNN classifiers can model non-linear boundaries
+ Neural networks are yet another non-linear classifier
+ Take the biological inspiration further by chaining together perceptrons
¢ Allows us to use what we learned about linear models:
» Loss functions, regularization, optimization
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Two-layer network architecture

Non-linearity is important
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The XOR function

¢ We saw that a perceptron cannot learn the XOR function

¢ Exercise: come up with the parameters of a two layer network with

two hidden units that computes the XOR function
» Here is a table with a bias feature for XOR

y| x% xm x (%, XIRX )

+1 | +1 +1  +1 4 e

+1 | +1 -1 -1 R ( X, \X, ol Xy

-1 | +1 +1 -1

-1 | +1 -1 +1 < e
5 LY

Do we gain anything beyond two layers?
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Expressive power of a two-layer network

¢ Theorem [Kurt Hornik et al., 1989]: Let F be a continuous function
on a bounded subset of D-dimensional space. Then there exists a
two-layer network F with finite number of hidden units that

approximates F arbitrarily well. Namely, for all x in the domain of F,
IF(X)-F(X)| < €

¢ Colloquially “a two-layer network can approximate any function”
» This is true for arbitrary link function

+ Going from one to two layers dramatically improves the representation
power of the network
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How many hidden units?

+ D dimensional data with K hidden units has(D+2)K+1 parameters
» (D+1)K in the first layer (1 for the bias) and K+1 in the second layer

+ With N training examples, set the number of hidden units K ~ N/D to
keep the number of parameters comparable to size of training data

¢ K'is both a form of regularization and inductive bias
¢ Training and test error vs. K
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Training a two-layer network

¢ Optimization framework:

2
. 1 T
W25 (%Z vt X“)

n

¢ Loss minimization: replace squared-loss with any other

+ Reqularization:
» Traditionally NN are not regularized (early stopping instead)
» But you can add a regularization (e.g. l>-norm of the weights)

+ Optimization by gradient descent
» Highly non-convex problem so no guarantees about optimality

CMPSCI 689 Subhransu Maji (UMASS)

7136



Training a two-layer network

¢ Optimization framework:

2
. 1 T
Wi 2~ 2 (y -2 il lw; X”>)

n

or equivalently,

min % (yn — VThn)2 hz’,n — f(W;FXn)

¢ Computing gradients: second layer

dLy,
v — (yn T VThn) hn

least-squares regression
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Training a two-layer network

¢ Optimization framework:

2
. 1 T
Wi 2~ 2 (@/ -2 il lw; X”>)

n

or equivalently,

. 1 T\ 2 T
Woo 4 2 (Yn = v" hy) hin = f(W; Xn)

n

¢ Computing gradients: first layer
> Chain rule of derivatives

dL, dh;  dL,
Z dh dWZ dw; — (yn — fUThn) Uif/(W?Xn)Xn

v

Oifij also called as back-propagation
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Practical issues: gradient descent

+ Easy to get gradients wrong!

» One strateqgy is to learn v by fixing W (least-squares) and then
learn W by fixing v and iterate between the two steps.

+ Use online gradients (or stochastic gradients)

dL dL
dL,, — = -
W< W — 1) dw Zn: dw

dw

batch online

¢ Learning rate: start with a high value and reduce it when the
validation error stops decreasing

¢ Momentum: move out small local minima
» Usually set to a high value: 5= 0.9

Awl) = 6Aw(t_1) + (1 - ) ( n

witD o wt + Aw(®)
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Practical issues: initialization

¢ Initialization didn’t matter for linear models

» Guaranteed convergence to global minima as long as step size is
suitably chosen since the objective Is convex

¢ Neural networks are sensitive to initialization
» Many local minima

» Symmetries: reorder the hidden units and change the weights
accordingly to get another network that produces identical outputs

¢ Train multiple networks with randomly initialized weights

pick the best
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Beyond two layers

+ The architecture generalizes to any directed acyclic graph (DAG)
» For example a multi-layer network

» One can order the vertices in a DAG such that all edges go from
left to right (topological sorting)

prediction: forward propagation

>

Y
Y,
! T |
A\ '
| |
layer :
y First hidden Second /'()utput
layer hidden layer layer
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Breadth vs. depth

+ Why train deeper networks?
+ We will borrow ideas from theoretical computer science

» A boolean circuit is a DAG where each node is either an input, an
AND gate, an OR gate, or a NOT gate. One of these is designated
as an output gate.

» Circuit complexity of a boolean function f is the size of the smallest
circuit (i.e., with the fewest nodes) that can compute f.

+ The parity function: the number of 1s is even or odd

parity(x (Z md> mod 2

¢ [Hastad, 1987] A depth-k circuit requires exp (nﬁ) to compute
the parity function of n inputs
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Breadth vs. depth

¢ Why not train deeper networks?

¢ Selecting the architecture is daunting
» How many hidden layers
» How many units per hidden layer

+ Vanishing gradients
» Gradients shrink as one moves away from the output layer
» Convergence is slow

¢ Training deep networks is an active area of research
» Layer-wise initialization (perhaps using unsupervised data)
» Engineering: GPUs to train on massive labelled datasets
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Two-layer network as kNN classifier

¢ Can a two-layer network learn a kNN classifier?
¢ Replace the link function with a Gaussian

h;, = tanh(w;-rx) > h; = exp (_’V(Wz’ - X)Z)

¢ The output has the form:

2
f(x) = Zvi exp (—y(w; — x)°)
0
+ By setting wias xiand v;as yifor the ith hidden node, we obtain a
» distance-weighted kNN classifier, and equivalently a
» kernel density classifier with a Gaussian kernel.

+ The advantage is that we can learn the centers (wi), widths (y) and
weights (v)) by back-propagation
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Convolutional neural networks

+ Images are not just a collection of pixels
» Lots of local structure: edges, corners, etc
» These statistics are translation invariant

¢ The convolution operation:

— filter: horizontal edge

absolute value of the output of

convolution of the image and filter
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Convolutional neural networks

+ Images are not just a collection of pixels
» Lots of local structure: edges, corners, etc
» These statistics are translation invariant

¢ The convolution operation:

| filter: vertical edge

absolute value of the output of

convolution of the image and filter
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Convolutional neural networks

+ Images are not just a collection of pixels
» Lots of local structure: edges, corners, etc
» These statistics are translation invariant
+ The pooling operation: subsample the output
» Invariance to small shitts
» Options: max, sum Parameters: window size, stride
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Convolutional neural networks

+ A CNN unit contains the following layers:
1.Convolutional layer containing a set of filters
2.Pooling layer
3.Non-linearity

¢ Deep CNN: a stack of multiple CNN units
» Inspired by the human visual system (V1, V2, V3 ....)

o tal | Dorsal pathway (spatial location and action) |
arieta

Hubel and Weisel, 1968
Structure of V1
“simple” cells: edge detectors

Temporal ‘
lobe

| Ventral pathway (characteristics of objects) |
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Example: LeNet5

C3: 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
28x28
32x32 6@ .

| 'T-r N

| Full conrlecnon ‘ Gaussuan connections
Convolutions Subsampling Convolunons Subsamphng Full connection

image — 6 5x5 — 2x2 —> 16 6x6 —> 2x2 —120 5x5 — full — full

¢ C1: Convolutional layer with 6 filters of size 5x5

¢ Output: 6x28x28

¢ Number of parameters: (5x5+1)*6 = 156

¢ Connections: (5x5+1)x(6x28x28) = 122304

¢ Connections in a fully connected network: (32x32+1)x(6X28x28)

LeCun 98
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Example: LeNet5

C3: 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
28x28
32x32 6@ .

| 'T-r N

| Full conrlecnon ‘ Gaussuan connections
Convolutions Subsampling Convolunons Subsamphng Full connection

image — 6 5x5 — 2x2 —> 16 6x6 —> 2x2 —120 5x5 — full — full

¢ S1: Subsampling layer

¢ Subsample by taking the sum of non-overlapping 2x2 windows
» Multiply the sum by a constant and add bias

¢ Number of parameters: 2x6=12

¢ Pass the output through a sigmoid non-linearity

¢ Output: 6x14x14
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Example: LeNet5

C3: 1. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 .
3@2’{'4??4 CS layer F6 layer OUTPUT

| 'T-r N

Convolutions Subsampling Convolunons Subsamphng Full connection

image — 6 5x5 — 2x2 —> 16 6x6 —> 2x2 —120 5x5 — full — full

¢ C3: Convolutional layer with 16 filters of size 6x6
¢ Each is connected to a subset:

Full conrlecnon ‘ Gaussuan connections

01 2 3 4 5 6 7 8 9 10111213 14 15
0] X X X X X X X X X X
¢ Number of parameters: 1,516 1l x x X X X X X X X X
. 2 X X X X X X X X X X
¢ Number of connections: 151,600 ;| % ¥ x X X X X x X X
] 4 X X X X X X X X X X
TABLE 1

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED

BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.
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Example: LeNet5

C3: 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
28x28
32x32 6@ .

| 'T-r N

| Full conrlecnon ‘ Gaussuan connections
Convolutions Subsampling Convolunons Subsamphng Full connection

image — 6 5x5 — 2x2 —> 16 6x6 —> 2x2 —120 5x5 — full — full

¢ S4: Subsampling layer

¢ Subsample by taking the sum of non-overlapping 2x2 windows
» Multiply by a constant and add bias

+ Number of parameters: 2x16 = 32

¢ Pass the output through a sigmoid non-linearity

¢ Output: 16x5x5
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Example: LeNet5

C3: 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
28x28
32x32 6@ .

| 'T-r N

| Full conrlecnon ‘ Gaussuan connections
Convolutions Subsampling Convolunons Subsamphng Full connection

image — 6 5x5 — 2x2 —> 16 6x6 —> 2x2 —120 5x5 — full — full

¢ C5: Convolutional layer with 120 outputs of size 1x1
¢ Each unit in C5 is connected to all inputs in S4
o Number of parameters: (16x5x5+1)*120 = 48120
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Example: LeNet5

C3: 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
28x28
32x32 6@ .

| 'T-r N

| Full conrlecnon ‘ Gaussuan connections
Convolutions Subsampling Convolunons Subsamphng Full connection

image — 6 5x5 — 2x2 —> 16 6x6 —> 2x2 —120 5x5 — full — full

¢ F6: fully connected layer
¢ Output: 1x1x84
o Number of parameters: (120+1)*84 = 10164

¢ OUTPUT: 10 Euclidean RBF units (one for each digit class)
=) (& —wij)®
J
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MNIST dataset

JeY/ 79 b6 a ..
67578634 gc 60,000 original datasets
2 ({9 9n/ as v s Testerror: 0.95%
Yyl 90| ¢ % 9 ¥
1t ysd 15460 |0Olo00oO0O]olo]o]o
1792653199 H|l)hhih [l ])
2222234430 [ salad|alald]|R
03 Y073 8§57
21LST00T BERALbE
7/281064g8 06/ -
S| s Slsls|Sls|S|S] ¢
Glélelelelelelel el
540,000 artificial distortions Vi rivivirie 7
+ 60,000 original 8|8|5|8|& 8 |8l|slsl|s
Test error: 0.8% GlalqlalelalglaelqlqQ

3-layer NN, 300+100 HU [distortions]
Test error: 2.5% http://yann.lecun.com/exdb/mnist/
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http://yann.lecun.com/exdb/mnist/

MNIST dataset: errors on the test set
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ImageNet Challenge 2012

¢ Similar framework to LeCun’98 with some differences:
» Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
» More data (10° vs. 103 images) — ImageNet dataset [Deng et al.]
» GPU implementation (50x speedup over CPU) ~ 2 weeks to train
» Some twists: Dropout regularization, ReLU max(0,x)

+ \Won the ImageNet challenge in 2012 by a large margin!
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Krizhevsky, |. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Layer 1: Learned filters

similar to “edge” and “blob” detectors
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Summary

+ Motivation: non-linearity
¢ Ingredients of a neural network
» hidden units, link functions
¢ Training by back-propagation
» random Initialization, chain rule, stochastic gradients, momentum
» Practical issues: learning, network architecture
¢ Theoretical properties:
» A two-layer network is a universal function approximator

» However, deeper networks can be more efficient at approximating
certain functions

+ Convolutional neural networks:
» (Good for vision problems where inputs have local structure
» Shared structure of weights leads to significantly fewer parameters
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Slides credit

+ Multilayer neural network figure source:
»  http://www.ibimapublishing.com/journals/CIBIMA/2012/525995/525995 .htm|

+ Cat image: http://www.playbuzz.com/abbeymcneill 10/which-cat-breed-are-you

+ More about the structure of the visual processing system
»  http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/ign-V1.html

+ ImageNet visualization slides are by Rob Fergus @ NYU/Facebook
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

¢ LeNetb figure from: http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
+ Chain rule of derivatives: http://en.wikipedia.org/wiki/Chain_rule
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