Overview

- Linear models
 - Perceptron: model and learning algorithm combined as one
 - Is there a better way to learn linear models?
- We will separate models and learning algorithms
 - Learning as optimization
 - Surrogate loss function
 - Regularization
 - Gradient descent
 - Batch and online gradients
 - Subgradient descent
 - Support vector machines

Learning as optimization

\[
\min_w \sum_n 1[y_n w^T x_n < 0] + \lambda R(w)
\]

- The perceptron algorithm will find an optimal \(w \) if the data is separable
 - Efficiency depends on the margin and norm of the data
- However, if the data is not separable, optimizing this is NP-hard
 - i.e., there is no efficient way to minimize this unless P=NP

- In addition to minimizing training error, we want a simpler model
 - Remember our goal is to minimize generalization error
 - Recall the bias and variance tradeoff for learners
- We can add a regularization term \(R(w) \) that prefers simpler models
 - For example we may prefer decision trees of shallow depth
- Here \(\lambda \) is a hyperparameter of optimization problem
The questions that remain are:

- What are good ways to adjust the optimization problem so that there are efficient algorithms for solving it?
- What are good regularizations $R(w)$ for hyperplanes?
- Assuming that the optimization problem can be adjusted appropriately, what algorithms exist for solving the regularized optimization problem?

Just like the surrogate loss function, we would like $R(w)$ to be convex

- **Zero/one loss** is hard to optimize
 - Small changes in w can cause large changes in the loss
- **Surrogate loss**: replace Zero/one loss by a smooth function
 - Easier to optimize if the surrogate loss is convex

Examples:

- **Zero/one** $\ell_{\text{zero}}(y, \hat{y}) = 1[y \neq \hat{y}]$
- **Hinge** $\ell_{\text{hinge}}(y, \hat{y}) = \max(0, 1 - y\hat{y})$
- **Logistic** $\ell_{\text{logistic}}(y, \hat{y}) = \frac{1}{\log 2} \log(1 + \exp[-y\hat{y}])$
- **Exponential** $\ell_{\text{exp}}(y, \hat{y}) = \exp[-y\hat{y}]$
- **Squared** $\ell_{\text{squared}}(y, \hat{y}) = (y - \hat{y})^2$

Weight regularization

- What are good regularization functions $R(w)$ for hyperplanes?
- We would like the weights —
 - To be small —
 - Change in the features cause small change to the score
 - Robustness to noise
 - To be sparse —
 - Use as few features as possible
 - Similar to controlling the depth of a decision tree
- This is a form of inductive bias

Convex surrogate loss functions

- **Zero/one loss** is hard to optimize
 - Small changes in w can cause large changes in the loss
- **Surrogate loss**: replace Zero/one loss by a smooth function
 - Easier to optimize if the surrogate loss is convex
- **Examples**:

- **Zero/one** $\ell_{\text{zero}}(y, \hat{y}) = 1[y \neq \hat{y}]$
- **Hinge** $\ell_{\text{hinge}}(y, \hat{y}) = \max(0, 1 - y\hat{y})$
- **Logistic** $\ell_{\text{logistic}}(y, \hat{y}) = \frac{1}{\log 2} \log(1 + \exp[-y\hat{y}])$
- **Exponential** $\ell_{\text{exp}}(y, \hat{y}) = \exp[-y\hat{y}]$
- **Squared** $\ell_{\text{squared}}(y, \hat{y}) = (y - \hat{y})^2$
Contours of p-norms

\[\|x\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{\frac{1}{p}} \]

- Convex for \(p \geq 1 \)

\[\|x\|_1 = \sum_{i=1}^{n} |x_i| \]

\[\|x\|_2 = \sqrt{\sum_{i=1}^{n} |x_i|^2} \]

\[\|x\|_\infty = \max_{i=1,\ldots,n} |x_i| \]

http://en.wikipedia.org/wiki/Lp_space

Contours of p-norms

\[\|x\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{\frac{1}{p}} \]

- Not convex for \(0 \leq p < 1 \)

\[p = \frac{2}{3} \]

Counting non-zeros:

\[R^{(\text{count})}(\mathbf{w}) = \sum_d 1[|w_d| > 0] \]

http://en.wikipedia.org/wiki/Lp_space

General optimization framework

\[
\min_{\mathbf{w}} \sum_{n} \ell \left(y_n, \mathbf{w}^T \mathbf{x}_n \right) + \lambda R(\mathbf{w})
\]

- Select a suitable:
 - Convex surrogate loss
 - Convex regularization
- Select the hyperparameter \(\lambda \)
- Minimize the regularized objective with respect to \(\mathbf{w} \)
- This framework for optimization is called Tikhonov regularization or generally Structural Risk Minimization (SRM)

http://en.wikipedia.org/wiki/Tikhonov_regularization

Optimization by gradient descent

Convex function

- Compute gradient at the current location \(g^{(k)} \)
- Take a step down the gradient \(p_{k+1} = p_k - \eta_k g^{(k)} \)

\[
g^{(k)} \leftarrow \nabla_{p} F(p)|_{p_k}
\]

Non-convex function

Local optima = Global optima
Choice of step size

- The step size is important —
 - too small: slow convergence
 - too large: no convergence
- A strategy is to use large step sizes initially and small step sizes later:
 \[\eta_t \leftarrow \eta_0 / (t_0 + t) \]
- There are methods that converge faster by adapting step size to the curvature of the function
 - Field of convex optimization

Example: Exponential loss

\[L(w) = \sum_n \exp(-y_n w^T x_n) + \frac{\lambda}{2} ||w||^2 \]
objective

\[\frac{dL}{dw} = \sum_n -y_n x_n \exp(-y_n w^T x_n) + \lambda w \]
gradient

\[w \leftarrow w - \eta \left(\sum_n -y_n x_n \exp(-y_n w^T x_n) + \lambda w \right) \]
update

Batch and online gradients

\[L(w) = \sum_n L_n(w) \]
objective

\[w \leftarrow w - \frac{dL}{dw} \]
gradient descent

- batch gradient
 \[w \leftarrow w - \eta \left(\sum_n \frac{dL_n}{dw} \right) \]
 sum of n gradients
 update weight after you see all points

- online gradient
 \[w \leftarrow w - \eta \left(\frac{dL_n}{dw} \right) \]
 gradient at nth point
 update weights after you see each point

Online gradients are the default method for multi-layer perceptrons

Subgradient

\[f^{(\text{hinge})}(y, w^T x) = \max(0, 1 - yw^T x) \]
subgradient

- The hinge loss is not differentiable at z=1
- Subgradient is any direction that is below the function
- For the hinge loss a possible subgradient is:

\[\frac{df^{(\text{hinge})}}{dw} = \begin{cases}
0 & \text{if } yw^T x > 1 \\
-yx & \text{otherwise}
\end{cases} \]
Example: Hinge loss

\[\mathcal{L}(w) = \sum_n \max(0, 1 - y_n w^T x_n) + \frac{\lambda}{2} \|w\|^2 \] objective

\[\frac{d\mathcal{L}}{dw} = \sum_n -1[y_n w^T x_n \leq 1] y_n x_n + \lambda w \] subgradient

\[w \leftarrow w - \eta \left(\sum_n -1[y_n w^T x_n \leq 1] y_n x_n + \lambda w \right) \] update

- loss term
 \[w \leftarrow w + \eta y_n x_n \]
 - only for points \(y_n w^T x_n \leq 1 \)
- regularization term
 \[w \leftarrow (1 - \eta \lambda) w \]
 - shrinks weights towards zero
- perceptron update \(y_n w^T x_n \leq 0 \)

Example: Squared loss

\[\mathcal{L}(w) = \sum_n (y_n - w^T x_n)^2 + \frac{\lambda}{2} \|w\|^2 \] objective

\[\begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,D} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \cdots & x_{N,D} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \]

\[\min_w \mathcal{L}(w) = \frac{1}{2} \|Xw - Y\|^2 + \frac{\lambda}{2} \|w\|^2 \]

Matrix inversion vs. gradient descent

- Assume, we have D features and N points
- Overall time via matrix inversion
 - The closed form solution involves computing:
 \[w = \left(X^T X + \lambda I_D \right)^{-1} X^T Y \]
 - Total time is \(O(D^2N + D^3 + DN) \), assuming \(O(D^3) \) matrix inversion
 - If \(N > D \), then total time is \(O(D^2N) \)
- Overall time via gradient descent
 - Gradient:
 \[\frac{d\mathcal{L}}{dw} = \sum_n -2(y_n - w^T x_n)x_n + \lambda w \]
 - Each iteration: \(O(ND) \); T iterations: \(O(TND) \)
- Which one is faster?
 - Small problems \(D < 100 \): probably faster to run matrix inversion
 - Large problems \(D > 10,000 \): probably faster to run gradient descent
Picking a good hyperplane

- Which hyperplane is the best?

Support Vector Machines (SVMs)

- Maximize the distance to the nearest point (margin), while correctly classifying all the points

Optimization for SVMs

Separable case: hard margin SVM

\[
\min_w \frac{1}{\delta(w)} \quad \text{maximize margin}
\]

subject to: \(y_n w^T x_n \geq 1, \forall n \) separate by a non-trivial margin

Non-separable case: soft margin SVM

\[
\min_w \frac{1}{\delta(w)} + C \sum_n \xi_n \quad \text{maximize margin minimize slack}
\]

subject to: \(y_n w^T x_n \geq 1 - \xi_n, \forall n \) allow some slack
\[
\xi_n \geq 0
\]

Margin of a classifier

\[
\delta(w) = \frac{1}{||w||}
\]

\[
w^T x - 1 = 0
\]

\[
\min_w \frac{1}{\delta(w)} \equiv \min_w ||w||
\]

maximizing margin = minimizing norm
Equivalent optimization for SVMs

Separable case: hard margin SVM

$$\min_w \frac{1}{2}||w||^2 \quad \text{maximize margin}$$

subject to: \(y_n w^T x_n \geq 1, \forall n \)

separate by a non-trivial margin

Non-separable case: soft margin SVM

$$\min_w \frac{1}{2}||w||^2 + C \sum_n \xi_n \quad \text{maximize margin minimize slack}$$

subject to: \(y_n w^T x_n \geq 1 - \xi_n, \forall n \) \(\xi_n \geq 0 \)

allow some slack

Slack variables

$$\min_w \frac{1}{2}||w||^2 + C \sum_n \xi_n$$

subject to: \(y_n w^T x_n \geq 1 - \xi_n, \forall n \)

\(\xi_n \geq 0 \)

- Suppose I tell you what \(w \) is, but forgot to give you the slack variables!
- Can you derive the optimal slack for the \(n \)th example?

\[
\begin{array}{ll}
\text{if } y_n w^T x_n = 0.8 & \text{then } \xi_n = 0.2 \\
\text{if } y_n w^T x_n = -1 & \text{then } \xi_n = 2.0 \\
\text{if } y_n w^T x_n = 2.5 & \text{then } \xi_n = 0 \\
\end{array}
\]

Same as hinge loss with squared norm regularization!

Optimization for linear models

- Under suitable conditions*, provided you pick the step sizes appropriately, the convergence rate of gradient descent is \(O(1/N) \)
- i.e., if you want a solution within 0.0001 of the optimal you have to run the gradient descent for \(N=1000 \) iterations.
- For linear models (hinge/logistic/exponential loss) and squared-norm regularization there are off-the-shelf solvers that are fast in practice:
 - SVMperf, LIBLINEAR, PEGASOS
 - SVMperf, LIBLINEAR use a different optimization method

Slides credit

- Figures of various “p-norms” are from Wikipedia
 - http://en.wikipedia.org/wiki/Lp_space
- Some of the slides are based on CIML book by Hal Daume III

* the function is strongly convex: \(f(y) \geq f(x) + \nabla f(x)^T (y-x) + \frac{m}{2}||y-x||_2^2 \)
% Code to plot various loss functions
y1=1;
y2=linspace(-2,3,500);
zeroOneLoss = y1*y2 <=0;
hingeLoss = max(0, 1-y1*y2);
logisticLoss = log(1+exp(-y1*y2))/log(2);
expLoss = exp(-y1*y2);
squaredLoss = (y1-y2).^2;

% Plot them
figure(1); clf; hold on;
plot(y2, zeroOneLoss, 'k-', 'LineWidth',1);
plot(y2, hingeLoss, 'b-', 'LineWidth',1);
plot(y2, logisticLoss, 'r-', 'LineWidth',1);
plot(y2, expLoss, 'g-', 'LineWidth',1);
plot(y2, squaredLoss, 'm-', 'LineWidth',1);
ylabel('Prediction', 'FontSize',16);
xlabel('Loss', 'FontSize',16);
legend({'Zero/one', 'Hinge', 'Logistic', 'Exponential', 'Squared'}, 'Location','NorthEast', 'FontSize',16);
box on;