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Linear models!
‣ Perceptron: model and learning algorithm combined as one 
‣ Is there a better way to learn linear models? 
We will separate models and learning algorithms!
‣ Learning as optimization 
‣ Surrogate loss function 
‣ Regularization 
‣ Gradient descent 
‣ Batch and online gradients 
‣ Subgradient descent 
‣ Support vector machines

Overview
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}model design

} optimization
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Learning as optimization
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min
w

X

n

1[ynw
T
xn < 0] + �R(w)

fewest mistakes

The perceptron algorithm will find an optimal w if the data is separable!
‣ efficiency depends on the margin and norm of the data 
However, if the data is not separable, optimizing this is NP-hard!
‣ i.e., there is no efficient way to minimize this unless P=NP
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In addition to minimizing training error, we want a simpler model!
‣ Remember our goal is to minimize generalization error 
‣ Recall the bias and variance tradeoff for learners 
We can add a regularization term R(w) that prefers simpler models !
‣ For example we may prefer decision trees of shallow depth 
Here λ is a hyperparameter of optimization problem

Learning as optimization
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min
w

X

n

1[ynw
T
xn < 0] + �R(w)

simpler modelfewest mistakes

hyperparameter
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The questions that remain are:!
‣ What are good ways to adjust the optimization problem so that 

there are efficient algorithms for solving it? 
‣ What are good regularizations R(w) for hyperplanes? 
‣ Assuming that the optimization problem can be adjusted 

appropriately, what algorithms exist for solving the regularized 
optimization problem?

Learning as optimization
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min
w

X

n

1[ynw
T
xn < 0] + �R(w)

simpler modelfewest mistakes

hyperparameter
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Zero/one loss is hard to optimize!
‣ Small changes in w can cause large changes in the loss 
Surrogate loss: replace Zero/one loss by a smooth function!
‣ Easier to optimize if the surrogate loss is convex 
Examples:

Convex surrogate loss functions
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What are good regularization functions R(w) for hyperplanes?!
We would like the weights —!
‣ To be small — 

➡ Change in the features cause small change to the score 
➡ Robustness to noise 

‣ To be sparse — 
➡ Use as few features as possible 
➡ Similar to controlling the depth of a decision tree 

This is a form of inductive bias

Weight regularization

7
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Just like the surrogate loss function, we would like R(w) to be convex!
Small weights regularization!
!
!
!
!
Sparsity regularization!
!
!
!
Family of “p-norm” regularization

Weight regularization
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R(norm)(w) =

sX

d

w2

d R(sqrd)(w) =
X

d

w2
d

R(count)(w) =
X

d

1[|wd| > 0] not convex

R(p-norm)(w) =

 
X

d

|wd|p
!

1/p
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Contours of p-norms
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convex for p � 1

http://en.wikipedia.org/wiki/Lp_space

http://en.wikipedia.org/wiki/Lp_space


Subhransu Maji (UMASS)CMPSCI 689 /29

Contours of p-norms
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not convex for 0  p < 1

p =
2

3

p = 0

R(count)(w) =
X

d

1[|wd| > 0]

Counting non-zeros:

http://en.wikipedia.org/wiki/Lp_space

http://en.wikipedia.org/wiki/Lp_space
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Select a suitable:!
‣ convex surrogate loss 
‣ convex regularization 
Select the hyperparameter λ!
Minimize the regularized objective with respect to w!
This framework for optimization is called Tikhonov regularization or 
generally Structural Risk Minimization (SRM)

General optimization framework
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regularizationsurrogate loss

hyperparameter

min
w

X

n

`
�
yn,w

T
xn

�
+ �R(w)

http://en.wikipedia.org/wiki/Tikhonov_regularization

http://en.wikipedia.org/wiki/Tikhonov_regularization
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Optimization by gradient descent
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Convex function

p1

p2

p5 p6

⌘1 p3
⌘2 p4
⌘3

step size

local optima = global optima

local optima

global optima

Non-convex function

pk+1  pk � ⌘kg
(k)

take a step down the gradient

g(k)  rpF (p)|pk

compute gradient at the current location



Subhransu Maji (UMASS)CMPSCI 689 /29

Choice of step size
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Good step size
p1

p2

p3

p4
p5 p6

p1 p2

p3 p4
p5 p6

⌘1

⌘1

Bad step size

The step size is important — !
‣ too small: slow convergence 
‣ too large: no convergence 
A strategy is to use large step sizes initially 
and small step sizes later:!
!
!
There are methods that converge faster by 
adapting step size to the curvature of the 
function!
‣ Field of convex optimization

⌘t  ⌘0/(t0 + t)

http://stanford.edu/~boyd/cvxbook/

http://stanford.edu/~boyd/cvxbook/
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Example: Exponential loss
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L(w) =

X

n

exp(�ynw
T
xn) +

�

2

||w||2 objective

dL
dw

=

X

n

�ynxn exp(�ynw
T
xn) + �w gradient

update
w w � ⌘

 
X

n

�ynxn exp(�ynwT
xn) + �w

!

w w + cynxn

loss term

high for misclassified points

similar to the perceptron update rule!

w (1� ⌘�)w

regularization term

shrinks weights towards zero
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Batch and online gradients
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w w � ⌘

 
X

n

dLn

dw

!
batch gradient

w w � ⌘

✓
dLn

dw

◆
online gradient

L(w) =
X

n

Ln(w)

w w � ⌘
dL
dw

objective

gradient descent

sum of n gradients gradient at nth point
update weight after you see all points update weights after you see each point

Online gradients are the default method for multi-layer perceptrons
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The hinge loss is not differentiable at z=1!
Subgradient is any direction that is below the function!
For the hinge loss a possible subgradient is:

Subgradient
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1

subgradient

`(hinge)(y,wT
x) = max(0, 1� ywT

x)

z

z

d`hinge

dw =

⇢
0 if ywT

x > 1

�yx otherwise
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Example: Hinge loss
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objective

w (1� ⌘�)w

regularization term

shrinks weights towards zero

L(w) =

X

n

max(0, 1� ynw
T
xn) +

�

2

||w||2

loss term

only for points 

w w + ⌘ynxn

ynw
T
xn  1

perceptron update ynwT
xn  0

updatew w � ⌘

 
X

n

�1[ynwT
xn  1]ynxn + �w

!
subgradientdL

dw
=

X

n

�1[ynw
T
xn  1]ynxn + �w
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Example: Squared loss
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objectiveL(w) =
X

n

�
yn �w

T
xn

�2
+

�

2
||w||2

matrix notation

equivalent loss
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Example: Squared loss
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gradient

exact!
closed-form!

solution

At optima the gradient=0

objective
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Assume, we have D features and N points!
Overall time via matrix inversion!
‣ The closed form solution involves computing: 
!
!

‣ Total time is O(D2N + D3 + DN), assuming O(D3) matrix inversion 
‣ If N > D, then total time is O(D2N) 
Overall time via gradient descent!
‣ Gradient: 
!

‣ Each iteration: O(ND); T iterations: O(TND) 
Which one is faster?!
‣ Small problems D < 100: probably faster to run matrix inversion 
‣ Large problems D > 10,000: probably faster to run gradient descent

Matrix inversion vs. gradient descent

20

dL
dw

=
X

n

�2(yn �w

T
xn)xn + �w
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Which hyperplane is the best?

Picking a good hyperplane

21
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Maximize the distance to the nearest point (margin), while correctly 
classifying all the points

Support Vector Machines (SVMs)

22

margin �(w)

w
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Optimization for SVMs
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min
w

1

�(w)

subject to: ynw
T
xn � 1, 8n

Separable case: hard margin SVM

separate by a non-trivial margin

maximize margin

subject to: ynw
T
xn � 1� ⇠n, 8n

⇠n � 0

min
w

1

�(w)
+ C

X

n

⇠n

Non-separable case: soft margin SVM

maximize margin minimize slack

allow some slack
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Margin of a classifier
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margin �(w)

w

w

T
x� 1 = 0

w

T
x+ 1 = 0

�(w) =
1

||w||

min
w

1

�(w)
⌘ min

w
||w||

maximizing margin = minimizing norm
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Equivalent optimization for SVMs
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subject to: ynw
T
xn � 1, 8n

Separable case: hard margin SVM

Non-separable case: soft margin SVM

separate by a non-trivial margin

maximize margin

subject to: ynw
T
xn � 1� ⇠n, 8n

⇠n � 0

allow some slack

maximize margin minimize slack

squaring and half for conveniencemin
w

1

2
||w||2

min
w

1

2
||w||2 + C

X

n

⇠n
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Suppose I tell you what w is, but forgot to give you the slack variables!
Can you derive the optimal slack for the nth example?!
‣                  = 0.8,      = ? 
‣                  = -1 ,       = ? 
‣                  = 2.5,      = ?

Slack variables
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subject to: ynw
T
xn � 1� ⇠n, 8n

⇠n � 0

soft margin SVM

ynw
T
xn ⇠n

⇠nynw
T
xn

ynw
T
xn ⇠n

0.2
2.0
0

⇠n =

⇢
0 ynwT

xn � 1

1� ynwT
xn otherwise

min

w

1

2

||w||2 + C
X

n

max(0, 1� ynw
T
xn)

Same as hinge loss with squared norm regularization!

min
w

1

2
||w||2 + C

X

n

⇠n
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Under suitable conditions*, provided you pick the step sizes 
appropriately, the convergence rate of gradient descent is O(1/N)!
‣ i.e., if you want a solution within 0.0001 of the optimal you have to 

run the gradient descent for N=1000 iterations. 
For linear models (hinge/logistic/exponential loss) and squared-norm 
regularization there are off-the-shelf solvers that are fast in practice: 
SVMperf , LIBLINEAR, PEGASOS!
‣ SVMperf , LIBLINEAR use a different optimization method

Optimization for linear models

27

* the function is strongly convex:
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Figures of various “p-norms” are from Wikipedia!
‣ http://en.wikipedia.org/wiki/Lp_space 
Some of the slides are based on CIML book by Hal Daume III!
!

Slides credit
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http://en.wikipedia.org/wiki/Lp_space
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Appendix: code for surrogateLoss
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2/20/15 11:12 AM /Users/smaji/Dropbo.../surrogateLoss.m 1 of 1

% Code to plot various loss functions
y1=1;
y2=linspace(−2,3,500);
zeroOneLoss = y1*y2 <=0;
hingeLoss = max(0, 1−y1*y2);
logisticLoss = log(1+exp(−y1*y2))/log(2);
expLoss = exp(−y1*y2);
squaredLoss = (y1−y2).^2;
 
% Plot them
figure(1); clf; hold on;
plot(y2, zeroOneLoss,’k−’,’LineWidth’,1);
plot(y2, hingeLoss,’b−’,’LineWidth’,1);
plot(y2, logisticLoss,’r−’,’LineWidth’,1);
plot(y2, expLoss,’g−’,’LineWidth’,1);
plot(y2, squaredLoss,’m−’,’LineWidth’,1);
ylabel(’Prediction’,’FontSize’,16);
xlabel(’Loss’,’FontSize’,16);
legend({’Zero/one’, ’Hinge’, ’Logistic’, ’Exponential’, ’Squared’}, ’Location’, 
’NorthEast’, ’FontSize’,16);
box on;
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