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Overview

¢ Linear models
» Perceptron: model and learning algorithm combined as one
» |s there a better way to learn linear models”
¢ We will separate models and learning algorithms
» Learning as optimization
» Surrogate loss function model design
» Regularization
Gradient descent
Batch and online gradients g optimization
Subgradient descent
Support vector machines
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Learning as optimization

min Z 1y, w'x, <0

T

fewest mistakes

¢ The perceptron algorithm will find an optimal w if the data is separable
» efficiency depends on the margin and norm of the data

+ However, if the data is not separable, optimizing this is NP-hard
» 1.e., there is no efficient way to minimize this unless P=NP
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Learning as optimization

hyperparameter

min Z 1y, w' x,, < 0] + i\R(W)

fewest mistakes simpler model

¢ In addition to minimizing training error, we want a simpler model
» Remember our goal is to minimize generalization error
» Recall the bias and variance tradeoft for learners

¢ We can add a regularization term R(w) that prefers simpler models
» For example we may prefer decision trees of shallow depth

¢ Here A is a hyperparameter of optimization problem
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Learning as optimization

hyperparameter

min Z 1y, w' x,, < 0] + i\R(W)

fewest mistakes simpler model

+ The questions that remain are:

» What are good ways to adjust the optimization problem so that
there are efficient algorithms for solving it?

» What are good regularizations R(w) for hyperplanes”

» Assuming that the optimization problem can be adjusted
appropriately, what algorithms exist for solving the regularized
optimization problem?
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Convex surrogate loss functions

o Zero/one loss is hard to optimize

/7N

» Small changes in w can cause large changes in the loss ~ concave
¢ Surrogate loss: replace Zero/one loss by a smooth function

» Easier to optimize if the surrogate loss Is convex v
¢ Examples: convex
N — Zerolone y=+41 g+ wix
8l ——Hinge
_| _Eigisrtmigntial | Zero/one: £9V(y,9) =1[yy < 0]
o e Hinge:  £""(y,7) = max{0,1 -y}
of 1 Logisticc  £%9(y,9) = 10;2 log (1 + exp[—y9])
I Exponential: £ (y,9) = exp[—y7]
’ Squared: £ (y,9) = (y — 9)*
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Weight regularization

¢ What are good regularization functions R(w) for hyperplanes?
+ We would like the weights —
» To be small —
= Change in the features cause small change to the score
= Robustness to noise
» To be sparse —
= Use as few features as possible
= Similar to controlling the depth of a decision tree
¢ This is a form of inductive bias
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Weight regularization

¢ Just like the surrogate loss function, we would like R(w) to be convex
o Small weights regularization

RO (w) = \/ >
d

¢ Sparsity regularization

R(count)

Zl |wd| >0

¢ Family of “p-norm” regularlzatlon

R(p norm)
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(Z wdp> 1/p
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Contours of p-norms

1
|zllp = (lza” + [22]” + - - - + [2al?)7 convex for p > 1
|||
/\1
]|y = |z >
1i=1 \/
A

oo [ 1)
fole = (3l

2]l = max |z >

http://en.wikipedia.org/wiki/Lp_space
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http://en.wikipedia.org/wiki/Lp_space

Contours of p-norms

1
|z|[, = (|x1]" + |xo|? 4+ - - + |za|F)? not convex for 0 < p <1

Wl B

Counting non-zeros:

p=20

R(count) Z 1 ‘wd| ~ O

http://en.W|k|ped|a.org/W|k|/Lp space
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General optimization framework

hyperparameter

l
min Z C(Yn, W' Xp) + AR(W)

surrogate loss regularization

¢ Select a suitable:
» convex surrogate loss
» convex regularization
¢ Select the hyperparameter A
+ Minimize the regularized objective with respect to w

¢ This framework for optimization is called Tikhonov regularization or
generally Structural Risk Minimization (SRM)

http://en.wikipedia.org/wiki/Tikhonov_regularization
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Optimization by gradient descent

Convex function

g(k) <~ V,F(p)|p,

compute gradient at the current location

Pk+1 < Pk — ng(k>

take a step down the gradient

T local optima = global optima

step size |

Non-convex function

local optima

/

global optima
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Choice of step size

¢ The step size is important —
» too small: slow convergence
» too large: no convergence

¢ A strategy is to use large step sizes initially
and small step sizes later:

Ny < 1o/ (to + t)

Good step size

¢ There are methods that converge faster by
adapting step size to the curvature of the
function

» Field of convex optimization

| (DPny
Optimization

http://stanford.edu/~boyd/cvxbook
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Example: Exponential loss

A
L(W) = Z exp(—yn W' X,) + §HWH2 objective

n

dL

dw

T

— Z —YnXp €Xp(—Yp W™ X, ) + AW gradient
n

W< W — 1) (Z —UnXn exp(—yanXn) + )\W) update

loss term regularization term
W < W + CYpXp w < (1 —nA)w
high for misclassified points shrinks weights towards zero

similar to the perceptron update rule!
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Batch and online gradients
L(w)=> Ly(w) objective

dL .
W <— W — nn—— (gradient descent
dwW
batch gradient online gradient
AL, dLl,,
% — -
W w "(;dw) wwn (52
sum of n gradients gradient at nth point

update weight after you see all points  update weights after you see each point

Online gradients are the default method for multi-layer perceptrons
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Subgradient

¢hinge) (o wT'x) = max(0,1 — yw?! x)

f
Z

--------------------------------------------

-
subgradient

¢ The hinge loss is not differentiable at z=1
¢ Subgradient is any direction that is below the function
¢ For the hinge loss a possible subgradient is:

dzhinge o O lf yWTX > 1
—yX otherwise

dw
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Example: Hinge loss

A
L(w) = Z max(0,1 — y, W’ x,,) + §HWH2 objective

dL
- = Zn: —1ly,w'x,, < 1ly,x, + AW  subgradient

W< W — 17 (Z — 1y, w' x, < ynx, + )\W) update

loss term regularization term
W%W‘F?T?yan w < (1 —npA)w
only for points yanxn <1 shrinks weights towards zero

perceptron update anTxn < 0
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Example: Squared loss

XN, 1

CMPSCI 689

L(w) = Z (yn — WTXn)2 +

T
X1.2 X1,D
X2 2 X2 D
XN2 -+ XN,D

X

min L(w)

w

\4

1 2 A 2
= 5 | Xw =Y||" + 7 [|w]
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A

w2

matrix notation

>4 X1 4Wy
) d X2 Wy

2 XN AW
—/—/H/—’ A AN —— S S ——

Y

equivalent loss

objective

Q

Y1
Y2
YN

Y
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Example: Squared loss

. 1 2 A 2
min ﬁ(w)=§\lxw—YH + 5 [|wl]

w
Vol(w)=X" Xw—-Y) + Aw
—X'Xw-X"Y+ \w
- (xTx n /\1) w—XTY

At optima the gradient=0

CMPSCI 689

(xTx + /\I)w Xy =0
— (xTx + /\ID)w =Xy

— w= (xTx+AID)—1xTY
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objective

gradient

exact
closed-form
solution
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Matrix inversion vs. gradient descent

¢ Assume, we have D features and N points
¢ Overall time via matrix inversion
» The closed form solution involves computing:

w = (xTx n /\ID) -1xTy

» Total time is O(D2N + D3 + DN), assuming O(D3) matrix inversion
» If N > D, then total time is O(D2N)
¢ Overall time via gradient descent

» (Gradient: Z 9y — W Xn)Xn L ow

» Each iteration: O(ND), T iterations: O(TND)
¢ Which one is faster?
» Small problems D < 100: probably faster to run matrix inversion
» Large problems D > 10,000: probably faster to run gradient descent
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Picking a good hyperplane

¢ Which hyperplane is the best?

CMPSCI 689 Subhransu Maji (UMASS) 21/29



Support Vector Machines (SVMs)

+ Maximize the distance to the nearest point (margin), while correctly
classifying all the points
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Optimization for SVMs

Separable case: hard margin SVM

1
min

w o(w)

maximize margin

Subject to: anTXn > 1, vn separate by a non-trivial margin

Non-separable case: soft margin SVM

mm 1 Can

maximize margin minimize slack
T

X, > 1 — fn, Vn allow some slack

subject to: y,w

En > 0
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Margin of a classifier

1
o(w) = ——
X Iwl
wx—1=0 1
‘. ® min = min ||W||
. \ o v O(W) w
WTX +1=0 \\ \\. maximizing margin = minimizing norm

® "\ margin §(w)

\
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Equivalent optimization for SVMs

Separable case: hard margin SVM

1

min 5 | ‘W‘ |2 squaring and half for convenience

maximize margin

Subject to: anTXn > 1, vn separate by a non-trivial margin

Non-separable case: soft margin SVM

1
min [[w|]* +C ) &,

w2
maximize margin minimizg slack
T

subject to: y,w” x,, > 1 —&,,,Vn allow some slack

En > 0
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Slack variables
m“irn %Hw\ 2+ C Zn: En soft margin SVM

subject to: y,wlx, >1—¢&,,Vn
n > 0

¢ Suppose | tell you what w is, but forgot to give you the slack variables
+ Can you derive the optimal slack for the nt» example?
y Y WX, =08, Ep=7 0.2 .
T = 62220 6 [0 w2
g anTXn = 2.5, €n= ? 0

1 —y,w'x, otherwise

1
min §HWH2 + C ; max(0,1 — y, W' X,,)

Same as hinge loss with squared norm regularization!
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Optimization for linear models

+ Under suitable conditions*, provided you pick the step sizes
appropriately, the convergence rate of gradient descent is O(1/N)

» |.e., If you want a solution within 0.0001 of the optimal you have to
run the gradient descent for N=1000 iterations.

¢ For linear models (hinge/logistic/exponential loss) and squared-norm
regularization there are off-the-shelf solvers that are fast in practice:
SVMpert | IBLINEAR, PEGASOS

» SVMpert [LIBLINEAR use a different optimization method

7 3 F 3 s T/ . m .
* the function is strongly convex: fly) = flx)+ Vilx) (y—2)+ ?Hy —z|3
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Slides credit

¢ Figures of various “p-norms” are from Wikipedia
» http://en.wikipedia.org/wiki/l p_space
¢ Some of the slides are based on CIML book by Hal Daume lII
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Appendix: code for surrogatelLoss

9 \

—— Zero/one
8t —Hinge -
— Logistic
7p Exponential -
—— Squared
6 |
c
O 5t -
Qutput - 2
D 4
o
3
ol
% Code to plot various loss functions 1
yl=1;
y2=linspace(-2,3,500); % s o s 0 05 1‘ 15 2 25 3
zeroOneLoss = yl*y2 <=0; Loss

hingeLoss = max(0, 1l-yl*y2);

logisticLoss = log(l+exp(-yl*y2))/log(2);
expLoss = exp(-yl*y2);

squaredLoss = (yl-y2).72;

% Plot them

figure(l); clf; hold on;

plot(y2, zeroOnelLoss,’'k-’',’LineWidth’,1); quéit|61k) C:C)(jea
plot(y2, hingeloss, 'b—', 'LineWidth’,1);

plot(y2, logisticloss,’'r—',’'LineWidth’,1);

plot(y2, explLoss,’'g—',’'LineWidth’,1);

plot(y2, squaredLoss, 'm—', 'LineWidth’,1);

ylabel (’'Prediction’, 'FontSize’,16);

xlabel(’'Loss’, 'FontSize’,16);

legend({'Zero/one’, 'Hinge’, 'Logistic’, 'Exponential’, ’'Squared’}, ’'Location’,k
'NorthEast’, ’'FontSize’,16);

box on;
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