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Mini-project 1 posted!
‣ One of three 
‣ Decision trees and perceptrons 
‣ Theory and programming 
‣ Due Wednesday, March 04, 11:55pm 4:00pm 

➡ Turn in a hard copy in the CS office 
‣ Must be done individually, but feel free to discuss with others 
‣ Start early …

Administrivia
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Learning with imbalanced data!
Beyond binary classification!
‣ Multi-class classification 
‣ Ranking 
‣ Collective classification

Today’s lecture
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One class might be rare (E.g., face detection)!
Mistakes on the rare class cost more:!
‣ cost of misclassifying y=+1 is     (>1) 
‣ cost of misclassifying y=-1 is 1 
Why? we want is a better f-score (or average precision)

Learning with imbalanced data
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↵

E(x,y)⇠D[f(x) 6= y] E(x,y)⇠D[↵y=1f(x) 6= y]

binary classification -weighted binary classification↵

Suppose we have an algorithm to train a binary classifier, 
can we use it to train the alpha weighted version?
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Input:             Output: !
!
While true!
‣ Sample  
‣ Sample  
‣ If  

➡ return 

Training by sub-sampling
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D,↵ D↵

(x, y) ⇠ D
t ⇠ uniform(0, 1)

y > 0 or t < 1/↵
(x, y)

We have sub-sampled the 
negatives by 

sub-sampling algorithm

✏ ↵✏

D↵ D

binary classification -weighted binary classification↵
Claim 
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Proof of the claim
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✏ ↵✏

D↵ D

binary classification -weighted binary classification↵

Error on D = E(x,y)⇠D[`
↵
(ŷ, y)]

=

X

x

(D(x,+1)↵[ŷ 6= 1] +D(x,�1)[ŷ 6= �1])

= ↵

 
X

x

✓
D(x,+1)[ŷ 6= 1] +

1

↵
D(x,�1)[ŷ 6= �1]

◆!

= ↵

 
X

x

(D↵
(x,+1)[ŷ 6= 1] +D↵

(x,�1)[ŷ 6= �1])

!

= ↵✏
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To train simply —!
‣ Subsample negatives and train a binary classifier. 
‣ Alternatively, supersample positives and train a binary classifier. 
‣ Which one is better? 
For some learners we don’t need to keep copies of the positives!
‣ Decision tree 

➡ Modify accuracy to the weighted version 
‣ kNN classifier 

➡ Take weighted votes during prediction 
‣ Perceptron?

Modifying training
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Learning with imbalanced data!
Beyond binary classification!
‣ Multi-class classification 
‣ Ranking 
‣ Collective classification

Overview
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Labels are one of K different ones.!
Some classifiers are inherently multi-class —!
‣ kNN classifiers: vote among the K labels, pick the one with the 

highest vote (break ties arbitrarily) 
‣ Decision trees: use multi-class histograms to determine the best 

feature to splits. At the leaves predict the most frequent label. 
Question: can we take a binary classifier and turn it into multi-class?

Multi-class classification
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Train K classifiers, each to distinguish one class from the rest!
Prediction: pick the class with the highest score:!
!
!
!
Example!
‣ Perceptron: 

➡ May have to calibrate the weights (e.g., fix the norm to 1) since we are 
comparing the scores of classifiers 

➡ In practice, doing this right is tricky when there are a large number of 
classes

One-vs-all (OVA) classifier

10

i argmax fi(x)

i argmaxw

T
i x

score function
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Train K(K-1)/2 classifiers, each to distinguish one class from another!
Each classifier votes for the winning class in a pair!
The class with most votes wins!
!
!
!
!
!
Example!
‣ Perceptron: 
!
➡ Calibration is not an issue since we are taking the sign of the score

One-vs-one (OVO) classifier
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i argmax

0

@
X

j

sign

�
w

T
ijx

�
1

A

i argmax

0

@
X

j

fij(x)

1

A fji = �fij

wji = �wij
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DAG SVM [Platt et al., NIPS 2000]!
‣ Faster testing: O(K) instead of O(K(K-1)/2) 
‣ Has some theoretical guarantees

Directed acyclic graph (DAG) classifier

12
Figure from Platt et al.
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Learning with imbalanced data!
Beyond binary classification!
‣ Multi-class classification 
‣ Ranking 
‣ Collective classification

Overview
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Ranking

14



Subhransu Maji (UMASS)CMPSCI 689 /27

Input: query (e.g. “cats”)!
Output: a sorted list of items!
!
How should we measure performance?!
The loss function is trickier than in the binary classification case!
‣ Example 1: All items in the first page should be relevant 
‣ Example 2: All relevant items should be ahead of irrelevant items

Ranking
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For simplicity lets assume we are learning to rank for a given query.!
Learning to rank:!
‣ Input: a list of items  
‣ Output: a function that takes a set of items and returns a sorted list 
!
!

Approaches!
‣ Pointwise approach: 

➡ Assumes that each document has a numerical score. 
➡ Learn a model to predict the score (e.g. linear regression). 

‣ Pairwise approach: 
➡ Ranking is approximated by a classification problem. 
➡ Learn a binary classifier that can tell which item is better given a pair.

Learning to rank
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y  f(x̂ij)
scorei = scorei + y

scorej = scorej � y

ranking arg sort(score)

score [0, 0, . . . , 0]

Create a dataset with binary labels!
‣ Initialize:  
‣ For every i and j such that, i ≠ j 

➡ If item i is more relevant than j 
• Add a positive point:  

➡ If item i is less relevant than j 
• Add a negative point: 

Learn a binary classifier on D!
Ranking!
‣ Initialize:  
‣ For every i and j such that, i ≠ j 

➡ Calculate prediction:  
➡ Update scores: 

Naive rank train
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D  D [ (xij ,+1)

D  D [ (xij ,�1)

D  � xij
features for 
comparing 
item i and j
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Naive rank train works well for bipartite ranking problems!
‣ Where the goal is to predict whether an item is relevant or not. 

There is no notion of an item being more relevant than another. 
A better strategy is to account for the positions of the items in the list!
Denote a ranking by: !
‣ If item u appears before item v, we have:  
Let the space of all permutations of M objects be:!
A ranking function maps M items to a permutation:!
A cost function (omega)!
‣ The cost of placing an item at position i at j:   
Ranking loss: 

Problems with naive ranking
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f : X ! ⌃M

�
�u < �v

⌃M

!(i, j)

`(�, �̂) =
X

u 6=v

[�u < �v][�̂v < �̂u]!(u, v)

!-ranking: min
f

E(X ,�)⇠D [`(�, �̂)] , where �̂ = f(X )
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To be a valid loss function ω must be:!
‣ Symmetric: 
‣ Monotonic: 
‣ Satisfy triangle inequality: 
!

Examples:!
‣ Kemeny loss: 
!
!

‣ Top-K loss:

ω-rank loss functions
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!(i, j) = !(j, i)
!(i, j)  !(i, k) if i < j < k or k < j < i

!(i, j) + !(j, k) � !(i, k)

!(i, j) = 1, for i 6= j

!(i, j) =

⇢
1 if min(i, j)  K, i 6= j
0 otherwise
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y  f(x̂ij)
scorei = scorei + y

scorej = scorej � y

ranking arg sort(score)

score [0, 0, . . . , 0]

D  � xij
features for 
comparing 
item i and j

D  D [ (xij ,�1,!(i, j))

D  D [ (xij ,+1,!(i, j))

Create a dataset with binary labels!
‣ Initialize:  
‣ For every i and j such that, i ≠ j 

➡ If σᵢ < σⱼ (item i is more relevant) 
• Add a positive point:  

➡ If σᵢ > σⱼ (item j is more relevant) 
• Add a negative point: 

Learn a binary classifier on D (each instance has a weight)!
Ranking!
‣ Initialize:  
‣ For every i and j such that, i ≠ j 

➡ Calculate prediction:  
➡ Update scores: 

ω-rank train
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Learning with imbalanced data!
Beyond binary classification!
‣ Multi-class classification 
‣ Ranking 
‣ Collective classification

Overview

21



Subhransu Maji (UMASS)CMPSCI 689 /27

Predicting multiple correlated variables

Collective classification
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input output
(x, k) 2 X ⇥ [K] G(X , k) be the set of all graphs

features

f : G(X ) ! G([K]) E(V,E)⇠D [⌃v2V (ŷv 6= yv)]objective

labels
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Predicting multiple correlated variables

Collective classification

23

independent predictions can be noisy
ŷv  f(xv)

labels of 
nearby vertices 

as features

xv  [xv,� ([K], nbhd(v))]

E.g., histogram of labels in a 5x5 neighborhood
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Train a two classifiers!
First one is trained to predict output from the input!
Second is trained on the input and the output of first classifier

Stacking classifiers
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ŷ(1)v  f1(xv)

ŷ(2)v  f2
⇣
xv,�

⇣
ŷ(1)v , nbhd(v)

⌘⌘
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Stacking classifiers

25

Train a stack of N classifiers!
 ith classifier is trained on the input + output of the previous i-1 classifiers!
!
!
!
!
!
!
!
!
!
Overfitting is an issue: the classifiers are accurate on training data but on 
not on test data leading to a cascade of overconfident classifiers!
Solution: held-out data

f1 f1 + f2 f1 + f2 + f3 …
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Learning with imbalanced data!
‣ Implicit and explicit sampling can be used to train binary classifiers 

for the weighted loss case 
Beyond binary classification!
‣ Multi-class classification 

➡ Some classifiers are inherently multi-class 
➡ Others can be combined using: one-vs-one, one-vs-all methods 

‣ Ranking 
➡ Ranking loss functions to capture distance between permutations 
➡ Pointwise and pairwise methods 

‣ Collective classification 
➡ Stacking classifiers trained with held-out data

Summary
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Some slides are adapted from CIML book by Hal Daume!
Images for collective classification are from the PASCAL VOC dataset!
‣ http://pascallin.ecs.soton.ac.uk/challenges/VOC/ 
Some of the discussion is based on Wikipedia!
‣ http://en.wikipedia.org/wiki/Learning_to_rank

Slides credit
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http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://en.wikipedia.org/wiki/Learning_to_rank

