Beyond binary classification

Subhransu Maji

CMPSCI 689: Machine Learning

19 February 2015

Administrivia

Mini-project 1 posted

- One of three
- Decision trees and perceptrons
- Theory and programming
- Due Wednesday, March 04, 11:55pm 4:00pm
 - Turn in a hard copy in the CS office
- Must be done individually, but feel free to discuss with others
- Start early ...

Today's lecture

- Learning with imbalanced data
- Beyond binary classification
 - Multi-class classification
 - Ranking
 - Collective classification

Learning with imbalanced data

- One class might be rare (E.g., face detection)
- Mistakes on the rare class cost more:
 - cost of misclassifying y=+1 is α (>1)
 - cost of misclassifying y=-1 is 1
- Why? we want is a better f-score (or average precision)

binary classification α -weighted binary classification $\mathbb{E}_{(\mathbf{x},y)\sim D}[f(\mathbf{x}) \neq y]$ $\mathbb{E}_{(\mathbf{x},y)\sim D}[\alpha^{y=1}f(\mathbf{x}) \neq y]$

Suppose we have an algorithm to train a binary classifier, can we use it to train the alpha weighted version?

Training by sub-sampling

While true

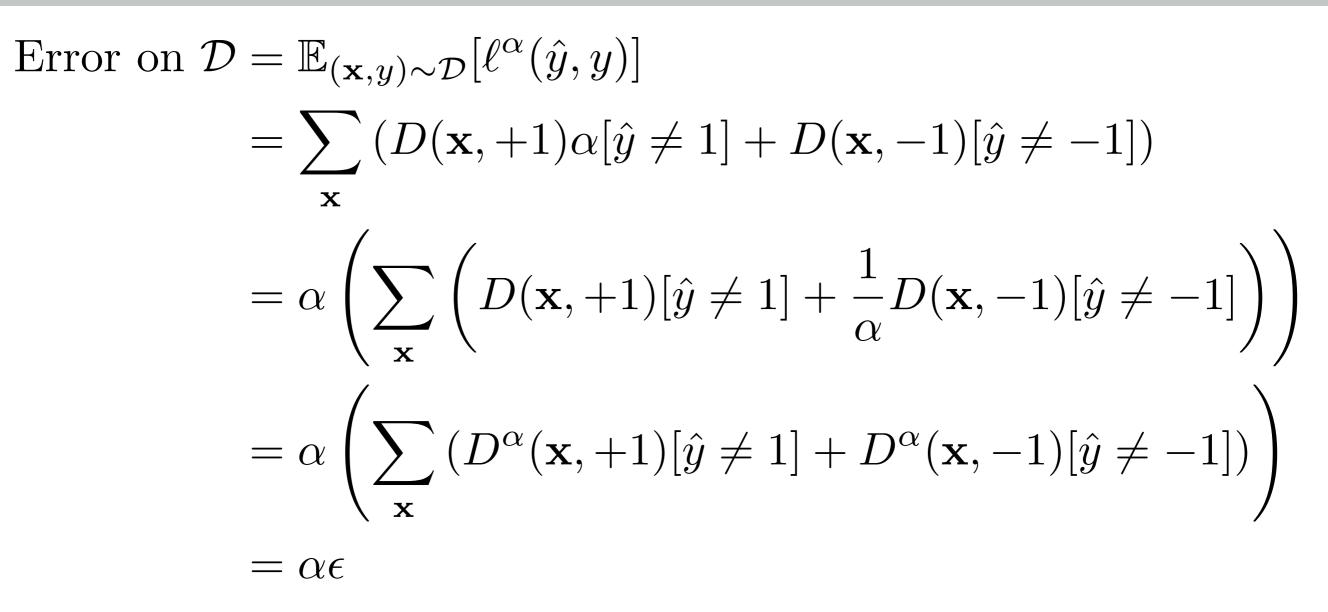
- Sample $(\mathbf{x}, y) \sim D$
- Sample $t \sim uniform(0, 1)$
- If y > 0 or $t < 1/\alpha$
 - return (\mathbf{x}, y)

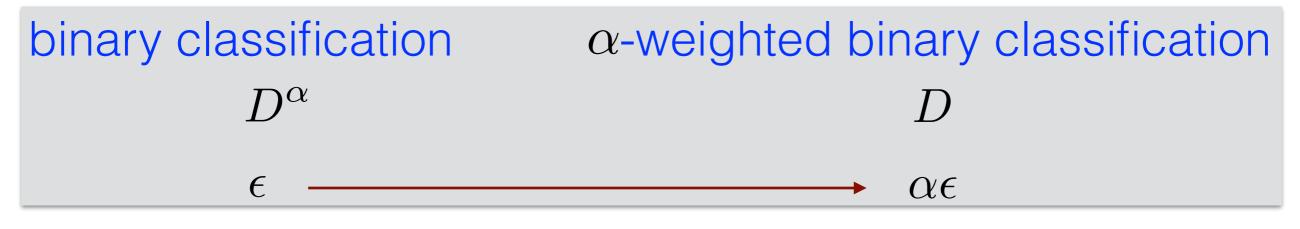
We have sub-sampled the negatives by $1/\alpha$

sub-sampling algorithm



Proof of the claim





Modifying training

◆ To train simply —

- Subsample negatives and train a binary classifier.
- Alternatively, supersample positives and train a binary classifier.
- Which one is better?
- For some learners we don't need to keep copies of the positives
 - Decision tree
 - Modify accuracy to the weighted version
 - kNN classifier
 - Take weighted votes during prediction
 - Perceptron?

Overview

- Learning with imbalanced data
- Beyond binary classification
 - Multi-class classification
 - Ranking
 - Collective classification

Multi-class classification

- Labels are one of K different ones.
- ♦ Some classifiers are inherently multi-class
 - kNN classifiers: vote among the K labels, pick the one with the highest vote (break ties arbitrarily)
 - Decision trees: use multi-class histograms to determine the best feature to splits. At the leaves predict the most frequent label.
- Question: can we take a binary classifier and turn it into multi-class?

One-vs-all (OVA) classifier

- Train K classifiers, each to distinguish one class from the rest
- Prediction: pick the class with the highest score:

$$i \leftarrow \arg \max f_i(\mathbf{x})$$
 score function

Example

- Perceptron: $i \leftarrow \arg \max \mathbf{w}_i^T \mathbf{x}$
 - May have to calibrate the weights (e.g., fix the norm to 1) since we are comparing the scores of classifiers
 - In practice, doing this right is tricky when there are a large number of classes

One-vs-one (OVO) classifier

- Train K(K-1)/2 classifiers, each to distinguish one class from another
- Each classifier votes for the winning class in a pair
- The class with most votes wins

$$i \leftarrow \arg \max \left(\sum_{j} f_{ij}(\mathbf{x}) \right)$$
 $f_{ji} = -f_{ij}$

• Example
• Perceptron:
$$i \leftarrow \arg \max \left(\sum_{j} \operatorname{sign} \left(\mathbf{w}_{ij}^T \mathbf{x} \right) \right) \quad \mathbf{w}_{ji} = -\mathbf{w}_{ij}$$

Calibration is not an issue since we are taking the sign of the score

Directed acyclic graph (DAG) classifier

- ◆ DAG SVM [Platt et al., NIPS 2000]
 - Faster testing: O(K) instead of O(K(K-1)/2)
 - Has some theoretical guarantees

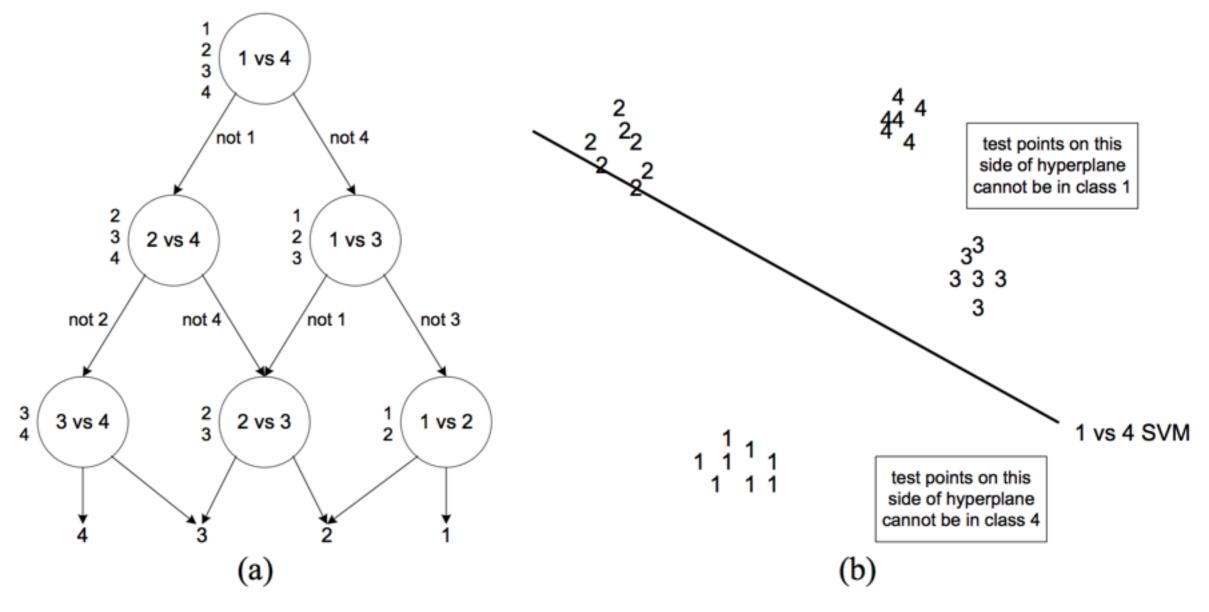
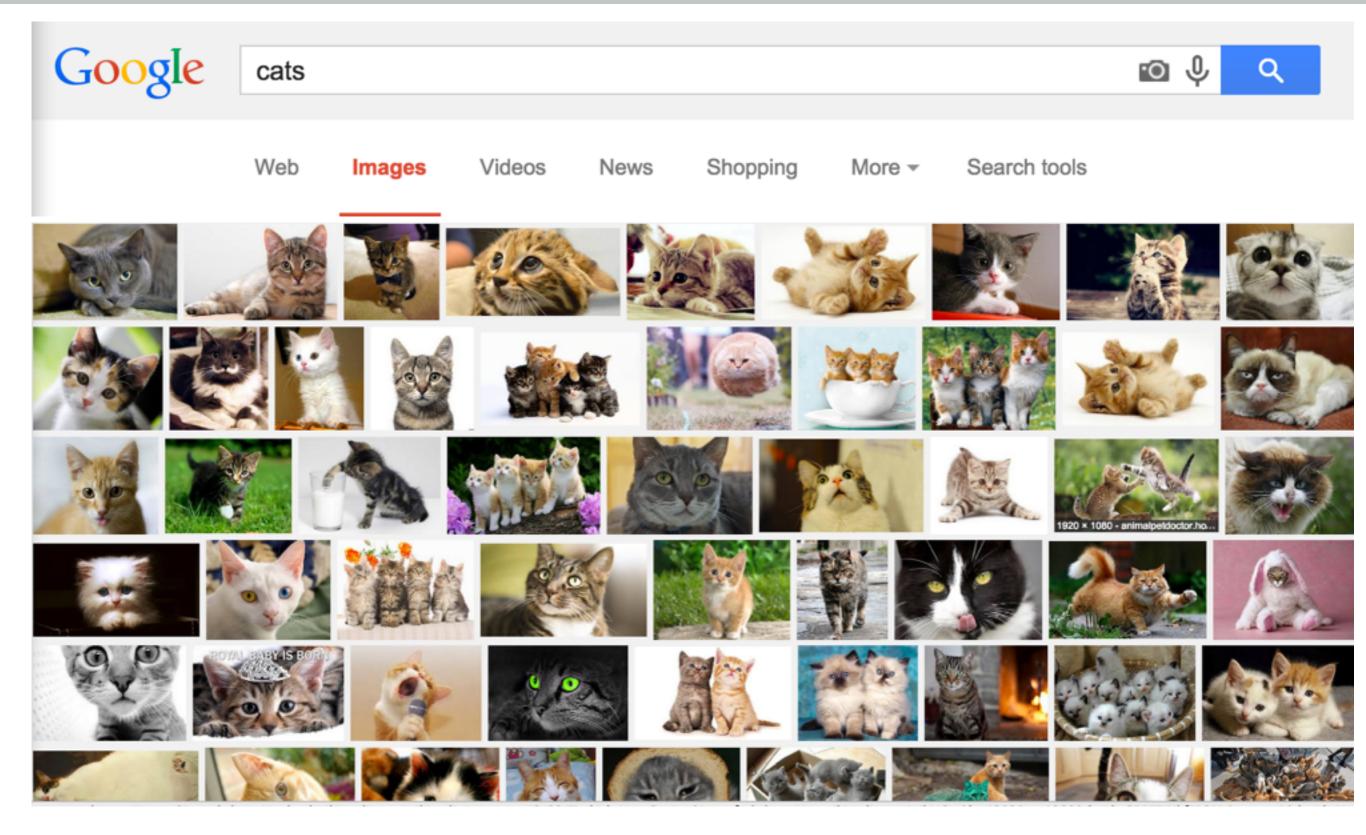


Figure from Platt et al.

Overview

- Learning with imbalanced data
- Beyond binary classification
 - Multi-class classification
 - Ranking
 - Collective classification

Ranking



Ranking

- Input: query (e.g. "cats")
- Output: a sorted list of items
- How should we measure performance?
- The loss function is trickier than in the binary classification case
 - Example 1: All items in the first page should be relevant
 - Example 2: All relevant items should be ahead of irrelevant items

Learning to rank

- For simplicity lets assume we are learning to rank for a given query.
- Learning to rank:
 - Input: a list of items
 - Output: a function that takes a set of items and returns a sorted list

Approaches

- Pointwise approach:
 - Assumes that each document has a numerical score.
 - Learn a model to predict the score (e.g. linear regression).
- Pairwise approach:
 - Ranking is approximated by a classification problem.
 - Learn a binary classifier that can tell which item is better given a pair.

Naive rank train

- Create a dataset with binary labels
 - $\bullet \text{ Initialize: } D \leftarrow \phi$
 - For every i and j such that, i ≠ j
 - If item i is more relevant than j
 - Add a positive point: $D \leftarrow D \cup (\mathbf{x}_{ij}, +1)$
 - If item i is *less* relevant than j
 - Add a negative point: $D \leftarrow D \cup (\mathbf{x}_{ij}, -1)$
- \blacklozenge Learn a binary classifier on D
- Ranking
 - Initialize: $score \leftarrow [0, 0, \dots, 0]$
 - For every i and j such that, i ≠ j
 - Calculate prediction: $y \leftarrow f(\hat{\mathbf{x}}_{ij})$
 - → Update scores: $score_i = score_i + y$ $score_j = score_j y$ ranking $\leftarrow \arg \operatorname{sort}(score)$

x_{ij} ← features for comparing item i and j

Problems with naive ranking

- Naive rank train works well for bipartite ranking problems
 - Where the goal is to predict whether an item is relevant or not.
 There is no notion of an item being *more* relevant than another.
- A better strategy is to account for the positions of the items in the list
- \bullet Denote a ranking by: σ
 - If item u appears before item v, we have: $\sigma_u < \sigma_v$
- + Let the space of all permutations of M objects be: \varSigma_M
- A ranking function maps M items to a permutation: $f: \mathcal{X} \to \Sigma_{\mathcal{M}}$
- A cost function (omega)
 - The cost of placing an item at position i at j: $\omega(i,j)$

• Ranking loss:
$$\ell(\sigma, \hat{\sigma}) = \sum_{u \neq v} [\sigma_u < \sigma_v] [\hat{\sigma}_v < \hat{\sigma}_u] \omega(u, v)$$

 ω -ranking: $\min_{f} \mathbb{E}_{(\mathcal{X},\sigma)\sim\mathcal{D}} \left[\ell(\sigma,\hat{\sigma})\right]$, where $\hat{\sigma} = f(\mathcal{X})$

ω-rank loss functions

• To be a valid loss function ω must be:

- Symmetric: $\omega(i,j) = \omega(j,i)$
- Monotonic: $\omega(i,j) \le \omega(i,k)$ if i < j < k or k < j < i
- Satisfy triangle inequality: $\omega(i,j) + \omega(j,k) \ge \omega(i,k)$
- Examples:
 - Kemeny loss:

$$\omega(i,j) = 1$$
, for $i \neq j$

Top-K loss:

$$\omega(i,j) = \begin{cases} 1 & \text{if } \min(i,j) \le K, i \ne j \\ 0 & \text{otherwise} \end{cases}$$

ω-rank train

- Create a dataset with binary labels • Initialize: $D \leftarrow \phi$
 - For every i and j such that, i ≠ j
 - If $\sigma_i < \sigma_j$ (item i is more relevant)
 - Add a positive point: $D \leftarrow D \cup (\mathbf{x}_{ij}, +1, \omega(i, j))$
 - If $\sigma_i > \sigma_j$ (item j is more relevant)
 - Add a negative point: $D \leftarrow D \cup (\mathbf{x}_{ij}, -1, \omega(i, j))$
- \blacklozenge Learn a binary classifier on D (each instance has a weight)
- Ranking
 - Initialize: $score \leftarrow [0, 0, \dots, 0]$
 - For every i and j such that, i \neq j
 - Calculate prediction: $y \leftarrow f(\hat{\mathbf{x}}_{ij})$
 - → Update scores: $score_i = score_i + y$ $score_j = score_j y$ ranking $\leftarrow \arg \operatorname{sort}(score)$

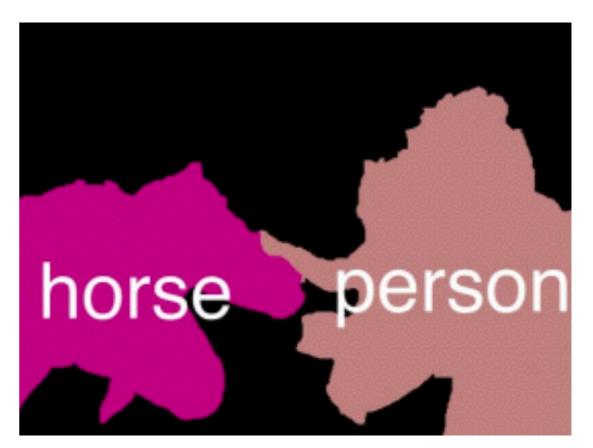
*x*_{*ij*} ← features for comparing item i and j

Overview

- Learning with imbalanced data
- Beyond binary classification
 - Multi-class classification
 - Ranking
 - Collective classification

Collective classification

Predicting multiple correlated variables



output

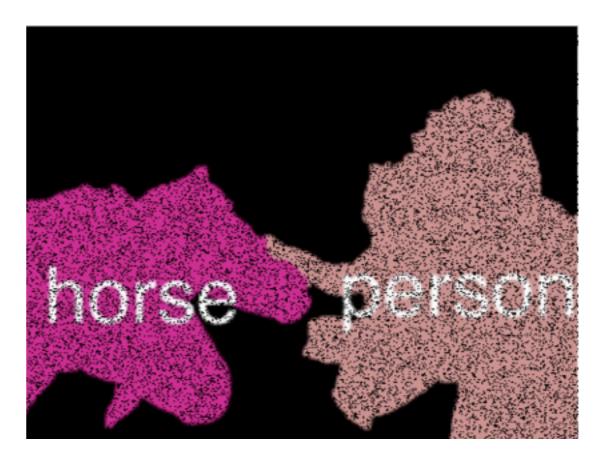
input

 $(\mathbf{x},k) \in \mathcal{X} \times [K]$ $\mathcal{G}(\mathcal{X},k)$ be the set of all graphs features labels

objective $f: \mathcal{G}(\mathcal{X}) \to \mathcal{G}([K]) \qquad \mathbb{E}_{(V,E)\sim\mathcal{D}} \left[\Sigma_{v\in V} (\hat{y}_v \neq y_v) \right]$

Collective classification

Predicting multiple correlated variables



$\hat{y}_v \leftarrow f(\mathbf{x}_v)$ independent predictions can be noisy

labels of nearby vertices as features

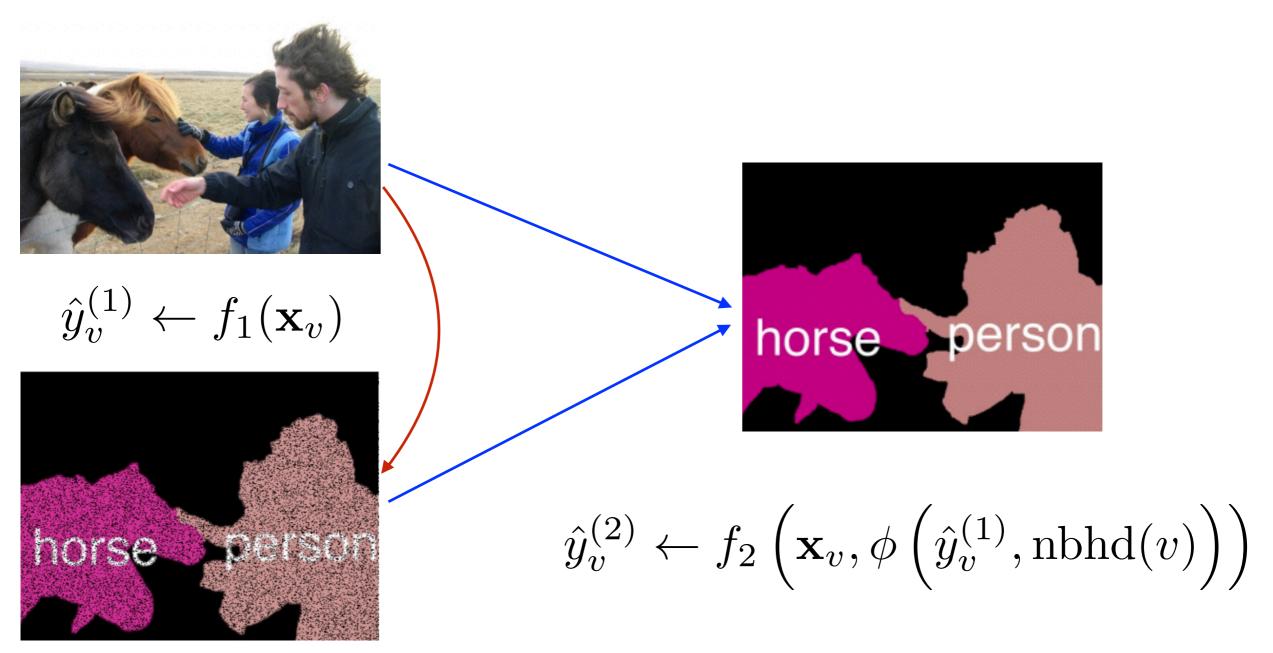
$$\mathbf{x}_v \leftarrow [\mathbf{x}_v, \phi([K], \operatorname{nbhd}(v))]$$

E.g., histogram of labels in a 5x5 neighborhood Subhransu Maji (UMASS) 23/27

CMPSCI 689

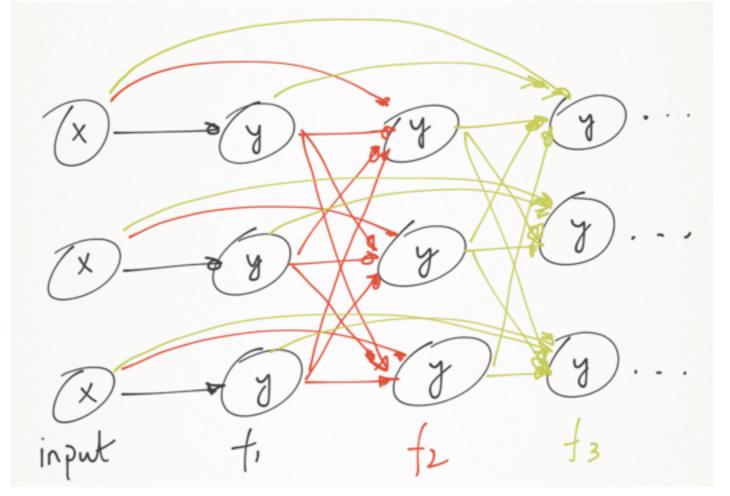
Stacking classifiers

- Train a two classifiers
- First one is trained to predict output from the input
- Second is trained on the input and the output of first classifier



Stacking classifiers

- Train a stack of N classifiers
- ith classifier is trained on the input + output of the previous i-1 classifiers



- Overfitting is an issue: the classifiers are accurate on training data but on not on test data leading to a cascade of overconfident classifiers
- Solution: held-out data

$$f_1 \qquad f_1 + f_2 \qquad f_1 + f_2 + f_3 \qquad \dots$$

CMPSCI 689

Summary

- Learning with imbalanced data
 - Implicit and explicit sampling can be used to train binary classifiers for the weighted loss case
- Beyond binary classification
 - Multi-class classification
 - Some classifiers are inherently multi-class
 - Others can be combined using: one-vs-one, one-vs-all methods
 - Ranking
 - Ranking loss functions to capture distance between permutations
 - Pointwise and pairwise methods
 - Collective classification
 - Stacking classifiers trained with held-out data

Slides credit

- Some slides are adapted from CIML book by Hal Daume
- Images for collective classification are from the PASCAL VOC dataset
 - http://pascallin.ecs.soton.ac.uk/challenges/VOC/
- Some of the discussion is based on Wikipedia
 - http://en.wikipedia.org/wiki/Learning_to_rank