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Homework stuff!
‣ Homework 3 is out 
‣ Homework 2 has been graded 
‣ Ask your TA any questions related to grading 
TA office hours (currently Thursday 2:30-3:30)!

1. Wednesday 3:30 - 4:30? 
Later in the week!
‣ p1: decision trees and perceptrons 
‣ due on March 03 
Start thinking about projects!
‣ Form teams (2+) 
‣ A proposal describing your project will be due mid March (TBD)

Administrivia
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The importance of good features
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Most learning methods are invariant to feature permutation!
‣ E.g., patch vs. pixel representation of images

The importance of good features
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Most learning methods are invariant to feature permutation!
‣ E.g., patch vs. pixel representation of images

The importance of good features

3

can you recognize the digits?

permute pixels

bag of pixels

permute patches

bag of patches
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Irrelevant features!
‣ E.g., a binary feature with  
Redundant features!
‣ For example, pixels next to each other are highly correlated 
Irrelevant features are not that unusual!
‣ Consider bag-of-words model for text which typically have on the 

order of 100,000 features, but only a handful of them are useful for 
spam classification  

!
!
!
Different learning algorithms are affected differently by irrelevant and 
redundant features

Irrelevant and redundant features
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E[f ;C] = E[f ]
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Consider adding 1 binary noisy feature for a binary classification task!
‣ For simplicity assume that in our dataset there are N/2 instances 

label=+1 and N/2 instances with label=-1 
‣ Probability that a noisy feature is perfectly correlated with the labels 

in the dataset is 2x0.5ᴺ 
‣ Very small if N is large (1e-6 for N=21) 
‣ But things are considerably worse where there are many irrelevant 

features, or if we allow partial correlation 
For large datasets, the decision tree learner can learn to ignore noisy 
features that are not correlated with the labels.

Irrelevant and redundant features
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How do irrelevant features affect decision tree classifiers?
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kNN classifiers (with Euclidean distance) treat all the features equally!
Noisy dimensions can dominate distance computation!
Randomly distributed points in high dimensions are all (roughly) 
equally apart!!
!
!
!
!
!
!
!
!
kNN classifiers can be bad with noisy features even for large N

Irrelevant and redundant features

6

How do irrelevant features affect kNN classifiers?

ai  N(0, 1) bi  N(0, 1)

E [||a� b||] !
p
2D
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Perceptrons can learn low weight on irrelevant features!
Irrelevant features can affect the convergence rate!
‣ updates are wasted on learning low weights on irrelevant features 
But like decision trees, if the dataset is large enough, the perceptron 
will eventually learn to ignore the weights!
Effect of noise on classifiers:

Irrelevant and redundant features
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How do irrelevant features affect perceptron classifiers?

vary the number of noisy dimensions

“3” vs “8” classification using pixel features  
(28x28 images = 784 features)

x [x z] zi = N(0, 1), i = 20, . . . , 212
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Selecting a small subset of useful features!
Reasons:!
‣ Reduce measurement cost 
‣ Reduces data set and resulting model size  
‣ Some algorithms scale poorly with increased dimension 
‣ Irrelevant features can confuse some algorithms 
‣ Redundant features adversely affect generalization for some 

learning methods 
‣ Removal of features can make learning easier and improve 

generalization (for example by increasing the margin)

Feature selection
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Feature selection methods
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Methods agnostic to the learning algorithm

Feature selection methods
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Methods agnostic to the learning algorithm
‣ Surface heuristics: remove a feature if it rarely changes

Feature selection methods
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‣ Surface heuristics: remove a feature if it rarely changes
‣ Ranking based: rank features according to some criteria
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Methods agnostic to the learning algorithm
‣ Surface heuristics: remove a feature if it rarely changes
‣ Ranking based: rank features according to some criteria

➡ Correlation:

Feature selection methods
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Methods agnostic to the learning algorithm
‣ Surface heuristics: remove a feature if it rarely changes
‣ Ranking based: rank features according to some criteria

➡ Correlation:

➡ Mutual information:

Feature selection methods
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Methods agnostic to the learning algorithm
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Methods agnostic to the learning algorithm
‣ Surface heuristics: remove a feature if it rarely changes
‣ Ranking based: rank features according to some criteria

➡ Correlation:

➡ Mutual information:

‣ Usually cheap
Wrapper methods
‣ Aware of the learning algorithm (forward and backward selection)
‣ Can be computationally expensive

Feature selection methods
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Forward and backward selection
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Given: a learner L, a dictionary of features D to select from  
‣ E.g., L = kNN classifier, D = polynomial functions of features
Forward selection!
‣ Start with an empty set of features F = Φ 
‣ Repeat till |F| < n 

➡ For every f in D 
• Evaluate the performance of the learner on F ∪ f 

➡ Pick the best feature f* 
➡ F = F ∪ f*, D = D \ f*

Forward and backward selection
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Given: a learner L, a dictionary of features D to select from  
‣ E.g., L = kNN classifier, D = polynomial functions of features
Forward selection!
‣ Start with an empty set of features F = Φ 
‣ Repeat till |F| < n 

➡ For every f in D 
• Evaluate the performance of the learner on F ∪ f 

➡ Pick the best feature f* 
➡ F = F ∪ f*, D = D \ f*

Backward selection is similar!
‣ Initialize F = D, and iteratively remove the feature that is least useful 
‣ Much slower than forward selection
Greedy, but can be near optimal under certain conditions

Forward and backward selection
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What if the number of potential features are very large?!
‣ If may be hard to find the optimal feature 
!
!
!
!
!

!
!
!
Approximation by sampling: pick the best among a random subset!
If done during decision tree learning, this will give you a random tree!
‣ We will see later (in the lecture on ensemble learning) that it is good 

to train many random trees and average them (random forest).

Approximate feature selection
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[Viola and Jones, IJCV 01]
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Feature normalization
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Even if a feature is useful some normalization may be good

Feature normalization
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Even if a feature is useful some normalization may be good
Per-feature normalization
‣ Centering

‣ Variance scaling

‣ Absolute scaling

Feature normalization

12
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Even if a feature is useful some normalization may be good
Per-feature normalization
‣ Centering

‣ Variance scaling

‣ Absolute scaling

‣ Non-linear transformation
➡ square-root 
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Even if a feature is useful some normalization may be good
Per-feature normalization
‣ Centering

‣ Variance scaling

‣ Absolute scaling

‣ Non-linear transformation
➡ square-root 

Per-example normalization
‣ fixed norm for each example

Feature normalization

12
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Choice of features is really important for most learners!
Noisy features:!
‣ All learners are bad when there are too many noisy features since some of 

these are likely to correlate well with labels 
‣ Some learners can learn to ignore noisy features given enough training data 

(e.g., perceptron and decision trees) 
‣ kNN suffers in high dimensions with noisy features 
Feature selection!
‣ May improve generalization and computational efficiency 
‣ Feature selection methods: 

➡ Learning agnostic methods: 
• correlation, mutual information, etc 

➡ Wrapper methods (uses a learner in the loop): 
• forward and backward selection 

Feature normalization:!
‣ per-feature - centering, variance/absolute scaling, square root 
‣ per-example - unit norm

Feature selection summary

13
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Lots of choices when using machine learning techniques!
‣ learner: kNN classifier, decision trees, perceptrons, et 
‣ features: what? how many? normalization? 
‣ hyperparameters 

➡ k for kNN classifier 
➡ maximum depth of the decision tree 
➡ number of iterations for the averaged perceptron training 
!

How do we measure the performance of models?!
‣ Ideally we would like models that have low generalization error 
‣ But we don’t have access to the test data or the data distribution

Model selection

14
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Set aside a fraction (10%-20%) of the training data!
This becomes our held-out data!
‣ Other names validation/development data 
!
!
!

‣ Remember: this is NOT the test data 
‣ Train each model on the remaining training data 
‣ Evaluate error on the held-out data 
‣ Choose model with the smallest held-out error 
Problems:!
‣ Wastes training data 
‣ May get unlucky with the split leading to a poor estimate of error

Held-out data

15

training

held-out
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K-fold cross-validation!
‣ Create K equal sized partitions of the training data 
‣ Each partition has N/K examples 
‣ Train using K − 1 partitions, validate on the remaining partition 
‣ Repeat the same K times, each with a different validation partition 
!
!
!
!
!
!
!
!

‣ Finally, choose the model with smallest average validation error 
‣ Usually K is chosen as 10

Cross-validation

16

training

held-out

K
…
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K-fold cross-validation with K=N (number of training examples)!
‣ Each partition contains only one example 
‣ Train using N−1 examples, validate on the remaining example 
‣ Repeat the same N times, each with a different validation example 
!
!
!
!
!
!
!
!

‣ Finally, choose the model with smallest average validation error 
‣ Can be expensive for large N. Typically used when N is small

Leave-one-out (LOO) cross-validation

17

training

held-out
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Efficiently picking the k for kNN classifier

LOO error example: kNN classifier

18

source: CIML book (Hal Daume III)
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Accuracy is not always a good metric!
‣ Face detection (1 in a million patches is a face) 
‣ Accuracy of the classifier that always says no = 99.9999% 

Precision and recall!
➡ true positives: selected elements that are relevant 
➡ false positives: selected elements that are irrelevant 
➡ true negatives: missed elements that are irrelevant 
➡ false negatives: missed elements that are relevant 

‣ precision = true positives/(true positives  + false positives) 
‣ recall = true positives/(true positives + false negatives) 
‣ f-score = harmonic mean of precision and recall 
!
!

‣ precision vs. recall curve!
‣ vary the threshold 
‣ average precision (AP) 

Other performance metrics

19

source: wikipedia
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Classifier A achieves 7.0% error!
Classifier B achieves 6.9% error!
!
How significant is the 0.1% difference in error!
‣ Depends on how much data did we test it on 

➡ 1000 examples: not so much (random luck) 
➡ 1m examples: probably 
!

Statistical significance tests!
‣ “There is a 95% chance that classifier A is better than classifier B” 
‣ We accept the hypothesis if the chance is greater than 95% 

➡ “Classifier A is better than classifier B” (hypothesis) 
➡ “Classifier A is is no better than classifier B” (null-hypothesis) 

‣ 95% is arbitrary (you could also report 90% or 99.99%) 
‣ A common example is “is treatment A better than placebo”

Statistical significance

20
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The experiment provided the Lady with 8 
randomly ordered cups of tea – 4 prepared by 
first adding milk, 4 prepared by first adding 
the tea. She was to select the 4 cups 
prepared by one method.!
‣ The Lady was fully informed of the 

experimental method. 
The “null hypothesis” was that the Lady had 
no such ability (i.e., randomly guessing)!
The Lady correctly categorized all the cups!!
There are (8 choose 4) = 70 possible 
combinations. Thus, the probability that the 
lady got this by chance = 1/70 (1.4%)

“Lady tasting tea”

21

Ronald Fisher

Fisher exact test
http://en.wikipedia.org/wiki/Lady_tasting_tea

http://en.wikipedia.org/wiki/Lady_tasting_tea
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Suppose you have two algorithms evaluated on N examples with error!
!
!
!
The t-statistic is defined as:!
!
!
!
Once you have a t value, compare it to a list of values on this table 
and report the significance level of the difference:

Statistical significance: paired t-test

22

â = a� µa b̂ = b� µb

t = (µa � µb)

s
N(N � 1)

P
n(ân � b̂n)2

N has to be large (>100)

B, with b = b1, b2, . . . , bNA, with a = a1, a2, . . . , aN
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Paired t-test cannot be applied to metrics that measure accuracy on 
the entire set (e.g. f-score, average precision, etc)!
Fortunately we can use cross-validation!
‣ For example, you run 5-fold cross validation 
‣ Method A gets f-scores 92.4, 93.9, 96.1, 92.2 and 94.4 

➡ Average f-score 93.8, standard deviation 1.595 
‣ Assuming the distribution of scores is a Gaussian: 

➡ 70% prob. mass lies in  
➡ 95% prob. mass lies in 
➡ 99.5% prob. mass lies in 
!
!

‣ So, if we were comparing this algorithm with another whose 
average f-score was 90.6%, we could be 95% certain that the 
better performance of A is not due to chance.

Confidence intervals: cross-validation

23
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Sometimes we cannot re-train the classifier!
‣ E.g., a black-box classifier you downloaded from the web 
All we have is a single test dataset of size N!
‣ How do we generate confidence intervals? 
Bootstrapping: a method to generate new datasets from a single one!
‣ Generate M copies of the dataset by sampling N points uniformly at 

random with replacement 
➡ without replacement the copies will be identical to the original 

‣ Measure f-score on each of these M datasets  
‣ Derive confidence intervals for the estimate of f-score 
Closely related to jackknife resampling!
‣ Generate N copies of the data of size (N-1) by leaving out each 

instance one by one

Confidence intervals: bootstrapping
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http://en.wikipedia.org/wiki/Jackknife_resampling
http://en.wikipedia.org/wiki/Bootstrapping_statistics

http://en.wikipedia.org/wiki/Jackknife_resampling
http://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
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Slides are adapted from CIML book by Hal Daume, slides by Piyush 
Rai at Duke University, and Wikipedia!
Digit images are from the MNIST dataset by Yann LeCun

Slides credit
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