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Administrivia

¢ Homework stuff
» Homework 3 Is out
» Homework 2 has been graded
» Ask your TA any questions related to grading
+ TA office hours (currently Thursday 2:30-3:30)
1. Wednesday 3:30 - 4:307
o Later in the week
» p1: decision trees and perceptrons
» due on March 03
¢ Start thinking about projects
» Form teams (2+)
» A proposal describing your project will be due mid March (TBD)
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The importance of good features
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The importance of good features

+ Most learning methods are invariant to feature permutation
» E.g., patch vs. pixel representation of images
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Irrelevant and redundant features

¢ Irrelevant features

» E.g., a binary feature with E| f; C| = E|f]
+ Redundant features

» For example, pixels next to each other are highly correlated
¢ Irrelevant features are not that unusual

» Consider bag-of-words model for text which typically have on the
order of 100,000 features, but only a handful of them are useful for
spam classification

¢ Different learning algorithms are affected differently by irrelevant and
redundant features
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Irrelevant and redundant features

How do irrelevant features affect decision tree classifiers?

+ Consider adding 1 binary noisy feature for a binary classification task

» For simplicity assume that in our dataset there are N/2 instances

abel=+1 and N/2 instances with label=-1

» Probabillity that a noisy feature is pertectly correlated with the labels
in the dataset is 2x0.5"

» Very small if N is large (1e-6 for N=21)

» But things are considerably worse where there are many irrelevant
features, or it we allow partial correlation

¢ For large datasets, the decision tree learner can learn to ignore noisy
features that are not correlated with the labels.
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Irrelevant and redundant features

How do irrelevant features affect kNN classifiers?

+ KNN classifiers (with Euclidean distance) treat all the features equally
+ Noisy dimensions can dominate distance computation

+ Randomly distributed points in high dimensions are all (roughly)
equally apart!
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+ KNN classifiers can be bad with noisy features even for large N
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Irrelevant and redundant features

How do irrelevant features affect perceptron classifiers?

¢ Perceptrons can learn low weight on irrelevant features
¢ Irrelevant features can affect the convergence rate
» updates are wasted on learning low weights on irrelevant features

+ But like decision trees, if the dataset is large enough, the perceptron
will eventually learn to ignore the weights

o Effect of noise on classifiers:

Effect of noise on 3 vs 8 dassification
] T

“3" vs “8” classification using pixel features
(28x28 images = 784 features)
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Feature selection

¢ Selecting a small subset of useful features
+ Reasons:

» Reduce measurement cost

» Reduces data set and resulting model size

» Some algorithms scale poorly with increased dimension
» Irrelevant features can confuse some algorithms

» Redundant features adversely affect generalization for some
earning methods

» Removal of teatures can make learning easier and improve
generalization (for example by increasing the margin)
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Feature selection methods

+ Methods agnostic to the learning algorithm
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Feature selection methods

+ Methods agnostic to the learning algorithm
» Surface heuristics: remove a feature it it rarely changes
» Ranking based: rank teatures according to some criteria
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Feature selection methods

+ Methods agnostic to the learning algorithm
» Surface heuristics: remove a feature it it rarely changes

» Ranking based: rank teatures according to some criteria

r=«{y r 37 r=
o O - o
0 v ™
- £ (=] (+] © o 8
F ) o
o o‘(,fc . P B O

* - ; ?fr’“‘”ﬂ

cov(X.Y)  E[(X — ux)(Y — py)]

Ox0Oy Ox0y

pxy =corr(X,|Y) =

240 260 280

20 30 40 50 60 70

220

= Mutual information: H(X) = — Z p(z) log p(x) entropy

plz.y) \ o . .
/ /p zy)] (p )p(y))dldy- I(X; Y)—H(X) H(X|Y) |decision
trees?

CMPSCI 689 Subhransu Maji (UMASS) 9/25



Feature selection methods

+ Methods agnostic to the learning algorithm
» Surface heuristics: remove a feature it it rarely changes

» Ranking based: rank features according to some criteria
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» Usually cheap
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Feature selection methods

+ Methods agnostic to the learning algorithm
» Surface heuristics: remove a feature it it rarely changes

» Ranking based: rank features according to some criteria
- COrre|atIOn scatter p|ot
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» Usually cheap
¢ Wrapper methods
» Aware of the learning algorithm (forward and backward selection)

» Can be computationally expensive
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Forward and backward selection
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Forward and backward selection

¢ Given: a learner L, a dictionary of features D to select from
» E.g., L = kNN classifier, D = polynomial functions of features
+ Forward selection
» Start with an empty set of features F = ©
» Repeat till |F| < n
= For every fin D
o Evaluate the performance of the learneron F U t

= Pick the best feature *
=F=FUf* D=D\f*
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Forward and backward selection

¢ Given: a learner L, a dictionary of features D to select from
» E.g., L = kNN classifier, D = polynomial functions of features
+ Forward selection
» Start with an empty set of features F = ©
» Repeat till |F| < n
= For every fin D
o Evaluate the performance of the learneron F U t

= Pick the best feature t*
=F=FUf*, D=D\f"
+ Backward selection is similar
» Initialize F = D, and iteratively remove the feature that is least useful
» Much slower than forward selection
+ Greedy, but can be near optimal under certain conditions
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Approximate feature selection

+ What if the number of potential features are very large?
» It may be hard to find the optimal feature

1. Edge features
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4. Special diagonal line feature used in [3,4,5]
+ Approximation by sampling: pick the best among a random subset
¢ If done during decision tree learning, this will give you a random tree

» We will see later (in the lecture on ensemble learning) that it is good
to train many random trees and average them (random forest).
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Feature normalization

¢ Even if a feature is useful some normalization may be good
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Feature normalization

¢ Even if a feature is useful some normalization may be good
+ Per-feature normalization

1
» Centering Tnd < Tn,d — Hd Hd — N Zmn,d
n
» Variance scaling Iy g <— xn,d/ad o = 1 (Tn.q — fta)?
N n
» Absolute scaling  Tn.4 < Tn.d/Td rq = max |, 4|
n ?
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Feature normalization

¢ Even if a feature is useful some normalization may be good
+ Per-feature normalization

1
» Centering Tnd < Tn,d — Hd Hd — N an,d
n
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Feature normalization

¢ Even if a feature is useful some normalization may be good
+ Per-feature normalization
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n
. . 1
» Variance scaling  Tn.d ¢ Tn.d/0d oa= =3 (@na— pa)?
N n
» Absolute scaling  Tn.4 < Tn.d/Td rq = max |, 4|
n ?
» Non-linear transformation Caltech-101 image classification

= sguare-root

Ln.d < vV Ln,d

(corrects for burstiness)

Object —+ Bag of ‘words’

41.6% linear
63.8% square-root

¢ Per-example normalization

» fixed norm for each example ||x|| =1
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Feature selection summary

+ Choice of features is really important for most learners
+ Noisy features:

» All learners are bad when there are too many noisy features since some of
these are likely to correlate well with labels

» Some learners can learn to ignore noisy features given enough training data
(e.g., perceptron and decision trees)

» KNN suffers in high dimensions with noisy features
¢ Feature selection
» May improve generalization and computational efficiency
» Feature selection methods:
= |earning agnostic methods:
 correlation, mutual information, etc
= Wrapper methods (uses a learner in the loop):
» forward and backward selection
¢ Feature normalization:
» per-feature - centering, variance/absolute scaling, square root
» per-example - unit norm
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Model selection

¢ Lots of choices when using machine learning technigues
» learner: KNN classifier, decision trees, perceptrons, et
» features: what? how many”? normalization”
» nyperparameters

= Kk for KNN classitier

= maximum depth of the decision tree

= number of iterations for the averaged perceptron training

+ How do we measure the performance of models?
» ldeally we would like models that have low generalization error
» But we don't have access to the test data or the data distribution
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Held-out data

¢ Set aside a fraction (10%-20%) of the training data
¢ This becomes our held-out data
» Other names validation/development data

training

- held-out

Remember: this is NOT the test data
Train each model on the remaining training data
Evaluate error on the held-out data
Choose model with the smallest held-out error
¢ Problems:
» Wastes training data
» May get unlucky with the split leading to a poor estimate of error

v

v

v

v
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Cross-validation

+ K-fold cross-validation
» Create K equal sized partitions of the training data
» Each partition has N/K examples
» Train using K = 1 partitions, validate on the remaining partition
» Repeat the same K times, each with a different validation partition

- training
- B held-out
< _

v _
» Finally, choose the model with smallest average validation error
» Usually K is chosen as 10
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Leave-one-out (LOO) cross-validation

+ K-fold cross-validation with K=N (number of training examples)
» Each partition contains only one example
» Train using N—1 examples, validate on the remaining example
» Repeat the same N times, each with a different validation example

I training
| - held-out

ST
|

» Finally, choose the model with smallest average validation error
» Can be expensive for large N. Typically used when N is small
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LOO error example: kNN classifier

+ Efficiently picking the k for KNN classifier
Algorithm g KNN-TRAIN-LOO(D)

erry <—0,V1<k<N-1 /| err;. stores how well you do with kNN
» forn=11to N do

3 Sm— (||xn — x|, m), Vm # n // compute distances to other points
& S 4 sORT(S) // put lowest-distance objects first
5 40 // current label prediction
« fork=1t0N—1do

7 (dist,m) + S

8 7 74+ Ym // let kth closest point vote
o if 7 # ym then

10: erry <— erry + 1 // one more error for kNN
” end if

= end for

5 end for

i return argmin, erry // return the K that achieved lowest error

source: CIML book (Hal Daume [I1)
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Other performance metrics

¢ Accuracy is not always a good metric clevent elements
» Face detection (1 in a million patches is a face) false negativas LI

» Accuracy of the classifier that always says no = 99.9999%

¢ Precision and recall
= true positives: selected elements that are relevant

true positives false positives

= false positives: selected elements that are irrelevant
= true negatives: missed elements that are irrelevant
= false negatives: missed elements that are relevant
» precision = true positives/(true positives + false positives)

» recall = true positives/(true positives + false negatives)

selected elements

» f-score = harmonic mean of precision and recall
precision - recall

F=2.

precision + recall

Precision = Recall = ———

» precision vs. recall curve
» vary the thresholad

» average precision (AP)

recall

source: wikipedia

precision

| —
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Statistical significance

o Classifier A achieves 7.0% error
¢ Classifier B achieves 6.9% error

+ How significant is the 0.1% difference in error

» Depends on how much data did we test it on
= 1000 examples: not so much (random luck)
= 1m examples: probably

+ Statistical significance tests

» “There is a 95% chance that classifier A is better than classifier B”

» We accept the hypothesis if the chance is greater than 95%
= “Classifier A is better than classifier B” (hypothesis)
= “Classifier A is is no better than classifier B” (null-hypothesis)

» 95% is arbitrary (you could also report 90% or 99.99%)
» A common example is “is treatment A better than placebo”
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“Lady tasting tea”

¢ The experiment provided the Lady with 8
randomly ordered cups of tea — 4 prepared by
first adding milk, 4 prepared by first adding
the tea. She was to select the 4 cups
prepared by one method.

» The Lady was fully informed of the
experimental method.

¢ The “null hypothesis” was that the Lady had
no such ability (i.e., randomly guessing)

¢ The Lady correctly categorized all the cups!

¢ There are (8 choose 4) = 70 possible
combinations. Thus, the probability that the
lady got this by chance = 1/70 (1.4%)

http://en.wikipedia.org/wiki/Lady_tasting_tea
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Statistical significance: paired t-test

¢ Suppose you have two algorithms evaluated on N examples with error
A witha=aj,a9,...,ay B, withb=251,b0s,...,bx

&:a_,ua, l;:b—,ub

¢ The t-statistic is defined as:

— (,ua _ Mb)\/ N(N _ }) N has to be large (>100)
Zn(&n - bn)2

+ Once you have a t value, compare it to a list of values on this table
and report the significance level of the difference:

t significance
> 1.28 90.0%
> 1.64 95.0%
> 1.96 97.5%

> 2.58 99.5%
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Confidence intervals: cross-validation

+ Paired t-test cannot be applied to metrics that measure accuracy on
the entire set (e.g. f-score, average precision, etc)

+ Fortunately we can use cross-validation

» For example, you run 5-fold cross validation

» Method A gets f-scores 92.4, 93.9, 96.1, 92.2 and 94 .4
= Average f-score 93.8, standard deviation 1.595

» Assuming the distribution of scores is a Gaussian:
= 70% prob. mass lies in |4 — o, it + 0]
= 95% prob. mass lies in [y — 20, u + 20]
= 99.5% prob. mass lies in[u — 30, u + 30]

|

1 02 03 04

0.0 O

» SO, If we were comparing this algorithm with another whose
average f-score was 90.6%, we could be 95% certain that the
better performance of A is not due to chance.
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Confidence intervals: bootstrapping

¢ Sometimes we cannot re-train the classifier
» E.g., a black-box classitier you downloaded from the web
+ All we have is a single test dataset of size N
» How do we generate confidence intervals?
¢ Bootstrapping: a method to generate new datasets from a single one

» Generate M copies of the dataset by sampling N points uniformly at
random with replacement

= without replacement the copies will be identical to the original
» Measure f-score on each of these M datasets
» Derive confidence intervals for the estimate of f-score
¢ Closely related to jackknife resampling

» Generate N copies of the data of size (N-1) by leaving out each
iInstance one by one

http://en.wikipedia.org/wiki/Bootstrapping_ statistics

http://en.wikipedia.org/wiki/Jackknife_resampling
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Slides credit

¢ Slides are adapted from CIML book by Hal Daume, slides by Piyush
Rai at Duke University, and Wikipedia

¢ Digit images are from the MNIST dataset by Yann LeCun
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