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NLP 13!
Deep learning, neural networks 8!
Computer vision 8!
Information retrieval 8!
Databases, systems, networking 4!
AI 3!
Reinforcement learning 3!
Robotics 3!
These got 1 or 2 mentions:!
‣ complexity, logic, large scale learning, speech, cross modality, 

biology, neuroscience, graphics, recommender systems, semi-
supervised learning, programming languages, virtual reality, 
privacy, security

Topics of interest
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“To pass the class with a B+”
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Nearest neighbor classifier
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Will Alice like AI?
‣ Alice and James are similar and James likes AI. Hence, Alice must 

also like AI.

Nearest neighbor classifier

3 Subhransu Maji (UMASS)CMPSCI 689 /37

Will Alice like AI?
‣ Alice and James are similar and James likes AI. Hence, Alice must 

also like AI.
It is useful to think of data as feature vectors 
‣ Use Euclidean distance to measure similarity

Nearest neighbor classifier

3

Subhransu Maji (UMASS)CMPSCI 689 /37

Will Alice like AI?
‣ Alice and James are similar and James likes AI. Hence, Alice must 

also like AI.
It is useful to think of data as feature vectors 
‣ Use Euclidean distance to measure similarity
Data to feature vectors

Nearest neighbor classifier

3 Subhransu Maji (UMASS)CMPSCI 689 /37

Will Alice like AI?
‣ Alice and James are similar and James likes AI. Hence, Alice must 

also like AI.
It is useful to think of data as feature vectors 
‣ Use Euclidean distance to measure similarity
Data to feature vectors
‣ Binary: e.g. AI? {no, yes} 

➡ {0,1} 
➡ or {-20, 2}

Nearest neighbor classifier

3



Subhransu Maji (UMASS)CMPSCI 689 /37

Will Alice like AI?
‣ Alice and James are similar and James likes AI. Hence, Alice must 

also like AI.
It is useful to think of data as feature vectors 
‣ Use Euclidean distance to measure similarity
Data to feature vectors
‣ Binary: e.g. AI? {no, yes} 

➡ {0,1} 
➡ or {-20, 2}

Nearest neighbor classifier

3

X

Subhransu Maji (UMASS)CMPSCI 689 /37

Will Alice like AI?
‣ Alice and James are similar and James likes AI. Hence, Alice must 

also like AI.
It is useful to think of data as feature vectors 
‣ Use Euclidean distance to measure similarity
Data to feature vectors
‣ Binary: e.g. AI? {no, yes} 

➡ {0,1} 
➡ or {-20, 2}

‣ Nominal: e.g. color = {red, blue, green, yellow}
➡ {0,1}ⁿ 
➡ or {0,1,2,3}

Nearest neighbor classifier

3

X

Subhransu Maji (UMASS)CMPSCI 689 /37

Will Alice like AI?
‣ Alice and James are similar and James likes AI. Hence, Alice must 

also like AI.
It is useful to think of data as feature vectors 
‣ Use Euclidean distance to measure similarity
Data to feature vectors
‣ Binary: e.g. AI? {no, yes} 

➡ {0,1} 
➡ or {-20, 2}

‣ Nominal: e.g. color = {red, blue, green, yellow}
➡ {0,1}ⁿ 
➡ or {0,1,2,3}

Nearest neighbor classifier

3

X

X

Subhransu Maji (UMASS)CMPSCI 689 /37

Will Alice like AI?
‣ Alice and James are similar and James likes AI. Hence, Alice must 

also like AI.
It is useful to think of data as feature vectors 
‣ Use Euclidean distance to measure similarity
Data to feature vectors
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‣ Nominal: e.g. color = {red, blue, green, yellow}
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Training data is in the form of !
Fruit data:!
‣ label: {apples, oranges, lemons} 
‣ attributes: {width, height} 
Euclidean distance 

Nearest neighbor classifier

4

(x1, y1), (x2, y2), . . . , (xn, yn)

height

width

d(x1,x2) =

sX

i

(x1,i � x2,i)
2

Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

test data
(a, b) ?

Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

test data
(a, b) ?



Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

test data
(a, b) ?

Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

test data
(a, b) ?

lemon

Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

test data

Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

test data
(c, d) ?



Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

test data
(c, d) ?

Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

test data
(c, d) ?

Subhransu Maji (UMASS)CMPSCI 689 /37

Nearest neighbor classifier

5

test data
(c, d) ?

apple

Subhransu Maji (UMASS)CMPSCI 689 /37

k-Nearest neighbor classifier
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k-Nearest neighbor classifier

6

What is the effect of k?

Take majority vote among the k nearest neighbors

outlier
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Decision boundaries: 1NN
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Decision boundaries: DT
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Choice of features!
‣ We are assuming that all features are equally important 
‣ What happens if we scale one of the features by a factor of 100? 
Choice of distance function!
‣ Euclidean, cosine similarity (angle), Gaussian, etc … 
‣ Should the coordinates be independent?  
Choice of k

Inductive bias of the kNN classifier
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“Texture synthesis” [Efros & Leung, ICCV 99]

An example
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‣ What is                                                                           ? 
‣ Find all the windows in the image that match the neighborhood 
‣ To synthesize x 

➡ pick one matching window at random 
➡ assign x to be the center pixel of that window 

‣ An exact match might not be present, so find the best matches using 
Euclidean distance and randomly choose between them, preferring 
better matches with higher probability

An example: Synthesizing one pixel

11

p
input image 

synthesized image 

Slide from Alyosha Efros, ICCV 1999
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An example: Synthesis results
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french canvas rafia weave

Slide from Alyosha Efros, ICCV 1999
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white bread brick wall

An example: Synthesis results
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Slide from Alyosha Efros, ICCV 1999
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Starting from the initial image, “grow” one pixel at a time!
‣ Application: remove an object from the image

An example: Growing Texture

15
Slide from Alyosha Efros, ICCV 1999
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Curse of dimensionality!
Speed

Practical issues when using kNN
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d = 2
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Curse of dimensionality!
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10x10#bins =

10ᵈ
d = 1000

#bins =

Atoms in the universe 
~ 10⁸⁰

How many neighborhoods are there?

d = 2
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Curse of dimensionality!
Speed!
‣ Time taken by kNN for N points of D dimensions  

➡ time to compute distances: O(ND) 
➡ time to find the k nearest neighbor 

• O(k N) : repeated minima 
• O(N log N) : sorting  
• O(N + k log N) : min heap 
• O(N + k log k) : fast median 

➡ Total time is dominated by distance computation 
‣ We can be faster if we are willing to sacrifice exactness

Practical issues when using kNN
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Approximate kNN

19
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Simplest idea is to cluster the 
data!
‣ Class ! 3 clusters 
‣ Cluster ! mean of points 
‣ Label of a test is the label of 

the nearest cluster mean
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How do we cluster the data?
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Given (x1, x2, …, xn), k-means clustering aims to partition 
the n observations into k (≤ n) sets S = {S1, S2, …, Sk} so as 
to minimize the within-cluster sum of squares.  
!
In other words, its objective is to find:

Clustering using k-means

20
http://en.wikipedia.org/wiki/K-means_clustering

cluster center
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the n observations into k (≤ n) sets S = {S1, S2, …, Sk} so as 
to minimize the within-cluster sum of squares.  
!
In other words, its objective is to find:

Clustering using k-means

20
http://en.wikipedia.org/wiki/K-means_clustering

Easy to compute μ given S and vice versa.

cluster center
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Initialize k centers by picking k points randomly!
Repeat till convergence (or max iterations)!
‣ Assign each point to the nearest center (assignment step) 

!

!

!
‣ Estimate the mean of each group (update step) 
!

!

!

Simple and works well in practice!
‣ Multiple initializations 
‣ Provably fast

Lloyd’s algorithm for k-means
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K-means in action

22
http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/
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K-means in action
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http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/
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k-d tree: O(log N) query time

Approximate kNN

23
http://en.wikipedia.org/wiki/K-d_tree
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k-d tree: O(log N) query time

Approximate kNN
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Decision trees?

http://en.wikipedia.org/wiki/K-d_tree

w > w₁

h > h₁

w > w₂

yes

yes

yes

no

…

…no

no

split at the median
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Very simple setup!
‣ Training: none 
‣ Testing: find k nearest neighbors and take the majority class label 
An example of a non-parametric classifier: the number of parameters of 
the classifier grow with the size of the training data 
Practical issues!
‣ Curse of dimensionality: worst case dataset size grows O(nᵈ)  
‣ Speed: clustering (using k-means) and k-d trees as approximations 
kNN is likely to be competitive when:!
‣ the number of features are relatively small (< 20) 
‣ the distance metric is good 
‣ the dataset is large 
Research questions:!
‣ Learning a good metric 
‣ Testing speed: RP trees, locality sensitive hashing (LSH), ….

Summary of kNN

24
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It may not be possible to get perfect classification on data!
‣ Measurement noise: sensors may be inaccurate 
‣ Information gap: Sometimes we just don’t have enough information 

to make accurate predictions 
➡ e.g. Class ratings have high variance 

• Will students like AI? (70% yes, 30% no) 
➡ e.g. Image is blurry

Not everything is learnable

25

3 or 7? 2 or 7?

The best error you can get is called the Bayes error
/36

Lets do a bit of learning theory …

26
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Bayes optimal classifier and error
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✏(ŷ) = E(x,y)⇠ D [`(y, ŷ)]: expected error of a predictor
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27

(x, y) ⇠ D(x, y) : training data `(y, ŷ): loss function

✏(ŷ) = E(x,y)⇠ D [`(y, ŷ)]: expected error of a predictor

✏(x, ŷ) = Ey⇠ D(y;x) [`(y, ŷ)]: expected error of a predictor at x

✏⇤(x) = ✏(x, y⇤)

y⇤(x) = argminŷ ✏(x, ŷ): Bayes optimal classifier

: Bayes error

`(y, ŷ) =

⇢
1 if y 6= ŷ
0 otherwise

y 2 {0, 1}Binary classification

y⇤(x) =

⇢
0 if D(y = 0;x) � 0.5
1 if D(y = 0;x) < 0.5

✏⇤(x) = 1�D (y⇤(x);x)

y⇤(x) = argmin
ŷ

[D(y = 0;x)`(0, ŷ) +D(y = 1;x)`(1, ŷ)]
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NN classifier is nearly optimal

28

(x, y)

(xnn, ynn)

✏1nn(x) = P (y = 1, ynn = 0;x,xnn) + P (y = 0, ynn = 1;x,xnn)

= D(y = 1;x)D(ynn = 0;xnn) +D(y = 0;x)D(ynn = 1;xnn)

= 2D(y = 1;x)D(y = 0;x)

 2min (D(y = 1;x), D(y = 0;x))

= 2✏⇤(x)

As n ! 1
D(ynn;xnn) ! D(y;x)
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NN classifier is nearly optimal
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(x, y)

(xnn, ynn)

Devroye, 1981
For any k � 5, ✏⇤  ✏knn  ✏⇤

 
1 +

r
2

k

!
Cover-Hart, 1967✏⇤  ✏1nn  2✏⇤

✏1nn(x) = P (y = 1, ynn = 0;x,xnn) + P (y = 0, ynn = 1;x,xnn)

= D(y = 1;x)D(ynn = 0;xnn) +D(y = 0;x)D(ynn = 1;xnn)

= 2D(y = 1;x)D(y = 0;x)

 2min (D(y = 1;x), D(y = 0;x))

= 2✏⇤(x)

As n ! 1
D(ynn;xnn) ! D(y;x)

/36

Machine learning solved?
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kNN is nearly optimal when there is infinite training data!
‣ Says nothing about the finite sample case 
‣ Note: not all classifiers are (nearly) optimal even with infinite data 
Bayes error is a function of features (x)!
‣ We can get better Bayes error if we choose different the features 

➡ If we had color in addition to the width and height, we would be able 
classify the fruits more accurately. 

How do we understand the performance of learners for the finite 
sample case?!
‣ Bias-variance decomposition

Not really …

30
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Standard way to decompose squared loss 

Bias-variance decomposition

31

`(y, ŷ) = (y � ŷ)2

✏ ⇠ N(0;�2)

(x1, y1), (x2, y2), . . . , (xn, yn) ! f̂(x)

y = f(x) + ✏

f̄(x) = Ef̂(x)

E
⇣

y � f̂(x)
⌘2

�
= E

h�
f(x)� f̄(x)

�2i
+ E

h
(f̂

�
x)� f̄(x)

�2i
+ �2

bias² variance noise

training algorithm
true function noise

expectation of the learned function

expectation is over datasets
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Example: curve fitting
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y = f(x) + ✏

f(x) = sin(⇡x)

✏ = N(0,�2) � = 0.1

figures from https://theclevermachine.wordpress.com/tag/estimator-variance/
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Example: curve fitting

32

y = f(x) + ✏

f(x) = sin(⇡x)

✏ = N(0,�2)

gn(x) = ✓0 + ✓1x+ ✓2x
2 + . . .+ ✓nx

n

� = 0.1

figures from https://theclevermachine.wordpress.com/tag/estimator-variance/
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Example: curve fitting

32

y = f(x) + ✏

f(x) = sin(⇡x)

✏ = N(0,�2)

gn(x) = ✓0 + ✓1x+ ✓2x
2 + . . .+ ✓nx

n

50 samples

� = 0.1

figures from https://theclevermachine.wordpress.com/tag/estimator-variance/
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Example: curve fitting

33
figures from https://theclevermachine.wordpress.com/tag/estimator-variance/
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Bias-variance decomposition proof
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f̄ = Ef̂

y = f + ✏
✏ ⇠ N(0;�2)

E
⇣

y � f̂)
⌘2

�
= E

⇣
f + ✏� f̂

⌘2
�

= E
⇣

f � f̂
⌘2

�
+ �2

= E
⇣

f � f̄ + f̄ � f̂
⌘2

�
+ �2

= E
h�
f � f̄

�2i
+ E

⇣
f̄ � f̂

⌘2
�
+ 2E

h�
f � f̄

� ⇣
f̄ � f̂

⌘i
+ �2

= E
h�
f � f̄

�2i
+ E

⇣
f̄ � f̂

⌘2
�
+ 2E

h⇣
ff̄ � ff̂ � f̄ f̄ + f̄ f̂

⌘i
+ �2

= E
h�
f � f̄

�2i
+ E

⇣
f̄ � f̂

⌘2
�
+ 2

�
ff̄ � ff̄ � f̄ f̄ + f̄ f̄

�
+ �2

= E
h�
f � f̄

�2i
+ E

⇣
f̄ � f̂

⌘2
�
+ �2
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Bias-variance decomposition proof

34

f̄ = Ef̂

y = f + ✏
✏ ⇠ N(0;�2)

Similar decomposition can be obtained for the 0/1 loss

E
⇣

y � f̂)
⌘2

�
= E

⇣
f + ✏� f̂

⌘2
�

= E
⇣

f � f̂
⌘2

�
+ �2

= E
⇣

f � f̄ + f̄ � f̂
⌘2

�
+ �2

= E
h�
f � f̄

�2i
+ E

⇣
f̄ � f̂

⌘2
�
+ 2E

h�
f � f̄

� ⇣
f̄ � f̂

⌘i
+ �2

= E
h�
f � f̄

�2i
+ E

⇣
f̄ � f̂

⌘2
�
+ 2E

h⇣
ff̄ � ff̂ � f̄ f̄ + f̄ f̂

⌘i
+ �2

= E
h�
f � f̄

�2i
+ E

⇣
f̄ � f̂

⌘2
�
+ 2

�
ff̄ � ff̄ � f̄ f̄ + f̄ f̄

�
+ �2

= E
h�
f � f̄

�2i
+ E

⇣
f̄ � f̂

⌘2
�
+ �2
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Bias-variance tradeoff for learners

35

E
⇣

y � f̂
⌘2

�
= E

h�
f � f̄

�2i
+ E

⇣
f̂ � f̄

⌘2
�
+ �2

error = bias + variance + noise

bias

degree of the polynomial

curve fitting with polynomials

variance

depth of the tree

bias
variance

decision tree

bias
variance

k

kNN regression
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kNN classifiers!
‣ geometry, metric, decision boundaries 
‣ effect of k 
‣ practical issues 

➡ curse of dimensionality 
➡ speed: clustering using k-means, k-d trees 

Theory!
‣ Bayes optimality 
‣ kNN is nearly Bayes optimal as training dataset size goes to infinity 
‣ Bias-variance decomposition 
‣ Understanding overfitting and underfitting

Summary
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The fruit classification dataset is from Iain Murray at University of 
Edinburgh — http://homepages.inf.ed.ac.uk/imurray2/teaching/
oranges_and_lemons/.!
The slides on texture synthesis are from Efros and Leung’s ICCV 
2009 presentation.!
Figures of the bias-variance tradeoff are from https://
theclevermachine.wordpress.com/tag/estimator-variance/.

Slides credit
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