

Subhransu Maji CMPSCI 689: Machine Learning

22 January 2015

Overview

- What does it mean to learn?
- Machine learning framework
- Decision tree model
 - a greedy learning algorithm
- Formalizing the learning problem
- Inductive bias
- Underfitting and overfitting
- Model, parameters, and hyperparameters

- Alice has just begun taking a machine learning course
- Bob, the instructor has to ascertain if Alice has "learned" the topics covered, at the end of the course
- A common way of doing this to give her an "exam"
- What is a reasonable exam?

- Alice has just begun taking a machine learning course
- Bob, the instructor has to ascertain if Alice has "learned" the topics covered, at the end of the course
- A common way of doing this to give her an "exam"
- What is a reasonable exam?
 - Choice 1: History of pottery
 - Alice's performance is not indicative of what she learned in ML

- Alice has just begun taking a machine learning course
- Bob, the instructor has to ascertain if Alice has "learned" the topics covered, at the end of the course
- A common way of doing this to give her an "exam"
- What is a reasonable exam?
 - Choice 1: History of pottery
 - Alice's performance is not indicative of what she learned in ML
 - Choice 2: Questions answered during lectures
 - Bad choice, especially if it is an open book

- Alice has just begun taking a machine learning course
- Bob, the instructor has to ascertain if Alice has "learned" the topics covered, at the end of the course
- A common way of doing this to give her an "exam"
- What is a reasonable exam?
 - Choice 1: History of pottery
 - Alice's performance is not indicative of what she learned in ML
 - Choice 2: Questions answered during lectures
 - Bad choice, especially if it is an open book
- A good test should test her ability to answer "related" but "new" questions on the exam
- This tests weather Alice has an ability to generalize
 - Generalization is a one of the central concepts in ML

- Student ratings of undergrad CS courses
- Collection of students and courses
- The evaluation is a score -2 (terrible), +2 (awesome)
- The job is to say if a particular student (say, Alice) will like a particular course (say, Algorithms)
- We are given historical data, i.e., course ratings in the past, we are trying to predict unseen ratings (i.e., the future)

- Student ratings of undergrad CS courses
- Collection of students and courses
- The evaluation is a score -2 (terrible), +2 (awesome)
- The job is to say if a particular student (say, Alice) will like a particular course (say, Algorithms)
- We are given historical data, i.e., course ratings in the past, we are trying to predict unseen ratings (i.e., the future)
- We can ask if:
 - Will Alice will like **History of pottery**?
 - Unfair, because the system doesn't even know what that is

- Student ratings of undergrad CS courses
- Collection of students and courses
- The evaluation is a score -2 (terrible), +2 (awesome)
- The job is to say if a particular student (say, Alice) will like a particular course (say, Algorithms)
- We are given historical data, i.e., course ratings in the past, we are trying to predict unseen ratings (i.e., the future)
- We can ask if:
 - Will Alice will like History of pottery? < too much generalization</p>
 - Unfair, because the system doesn't even know what that is

- Student ratings of undergrad CS courses
- Collection of students and courses
- The evaluation is a score -2 (terrible), +2 (awesome)
- The job is to say if a particular student (say, Alice) will like a particular course (say, Algorithms)
- We are given historical data, i.e., course ratings in the past, we are trying to predict unseen ratings (i.e., the future)
- We can ask if:
 - Will Alice will like History of pottery? < too much generalization</p>
 - Unfair, because the system doesn't even know what that is
 - Will Alice like AI?
 - Easy if Alice took AI last year and said it was +2 (awesome)

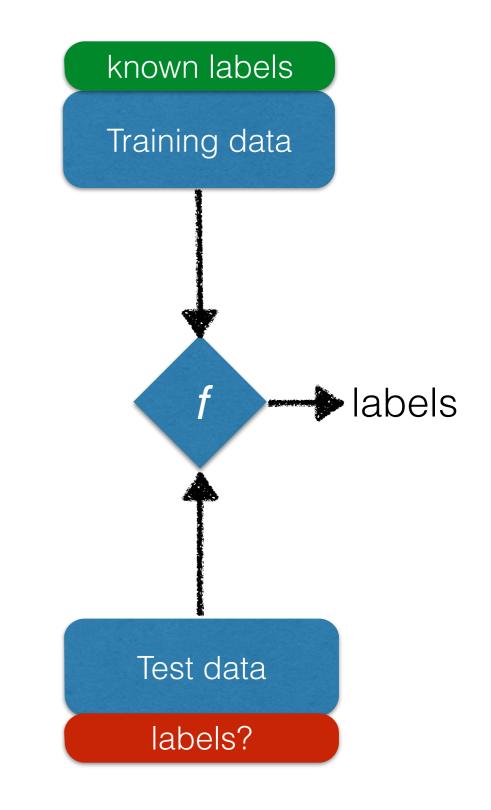
- Student ratings of undergrad CS courses
- Collection of students and courses
- The evaluation is a score -2 (terrible), +2 (awesome)
- The job is to say if a particular student (say, Alice) will like a particular course (say, Algorithms)
- We are given historical data, i.e., course ratings in the past, we are trying to predict unseen ratings (i.e., the future)

• We can ask if:

- Will Alice will like History of pottery? < too much generalization</p>
 - Unfair, because the system doesn't even know what that is
- Will Alice like AI?
 - Easy if Alice took AI last year and said it was +2 (awesome)

Machine learning framework

- Training data:
 - Alice in ML course: concepts that she encounters in the class
 - Recommender systems: past course ratings
- Learning algorithm induces a function f that maps examples to labels
- The set of new examples is called the "test" set
 - Closely guarded secret: it is the final exam where the learner is going to be tested
 - A ML algorithm has succeeded if its performance on the test data is good
- We will focus on a simple model of learning called a decision tree



Classic and natural model of learning

- Classic and natural model of learning
- Question: Will an unknown user enjoy an unknown course?
 - You: Is the course under consideration in Systems?
 - Me: Yes
 - You: Has this student taken any other Systems courses?
 - Me: Yes
 - You: Has this student liked most previous Systems courses?
 - **Me:** No
 - You: I predict this student will not like this course.

- Classic and natural model of learning
- Question: Will an unknown user enjoy an unknown course?
 - You: Is the course under consideration in Systems?
 - Me: Yes
 - You: Has this student taken any other Systems courses?
 - Me: Yes
 - You: Has this student liked most previous Systems courses?
 - **Me:** No
 - You: I predict this student will not like this course.
- Goal of learner: Figure out what questions to ask, and in what order, and what to predict when you have answered enough questions

Learning a decision tree

- Recall that one of the ingredients of learning is training data
 - I'll give you (x, y) pairs, i.e., set of (attributes, label) pairs
 - We will simplify the problem by
 - ➡ {0,+1, +2} as "liked"
 - ➡ {-1,-2} as "hated"
- Here:
 - Questions are features
 - Responses are feature values
 - Rating is the label
- Lots of possible trees to build
- Can we find good one quickly?

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	У	у	n	У	n
+2	у	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	У	n
+2	n	у	У	n	У
+1	У	у	n	n	n
+1	У	у	n	У	n
+1	n	у	n	У	n
0	n	n	n	n	У
о	у	n	n	У	У
0	n	у	n	У	n
0	у	у	У	У	у
-1	У	у	У	n	У
-1	n	n	У	У	n
-1	n	n	У	n	У
-1	У	n	У	n	У
-2	n	n	у	У	n
-2	n	у	у	n	у
-2	У	n	у	n	n
-2	у	n	У	n	у

Course ratings dataset

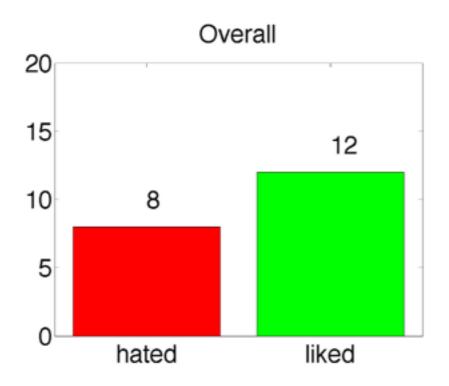
Greedy decision tree learning

- If I could ask one question, what question would I ask?
 - You want a feature that is most useful in predicting the rating of the course
 - A useful way of thinking about this is to look at the histogram of the labels for each feature

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у	у	n y		n
+2	У	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	У	n
+2	n	у	У	n	у
+1	У	у	n	n	n
+1	у	у	n	У	n
+1	n	у	n	У	n
о	n	n	n	n	у
0	у	n	n	У	у
0	n	у	n	У	n
0	У	у	У	У	у
-1	У	у	У	n	у
-1	n	n	У	У	n
-1	n	n	У	n	у
-1	У	n	У	n	у
-2	n	n	у	У	n
-2	n	у	у	n	у
-2	у	n	у	n	n
-2	у	n	у	n	у

Greedy decision tree learning

- If I could ask one question, what question would I ask?
 - You want a feature that is most useful in predicting the rating of the course
 - A useful way of thinking about this is to look at the histogram of the labels for each feature

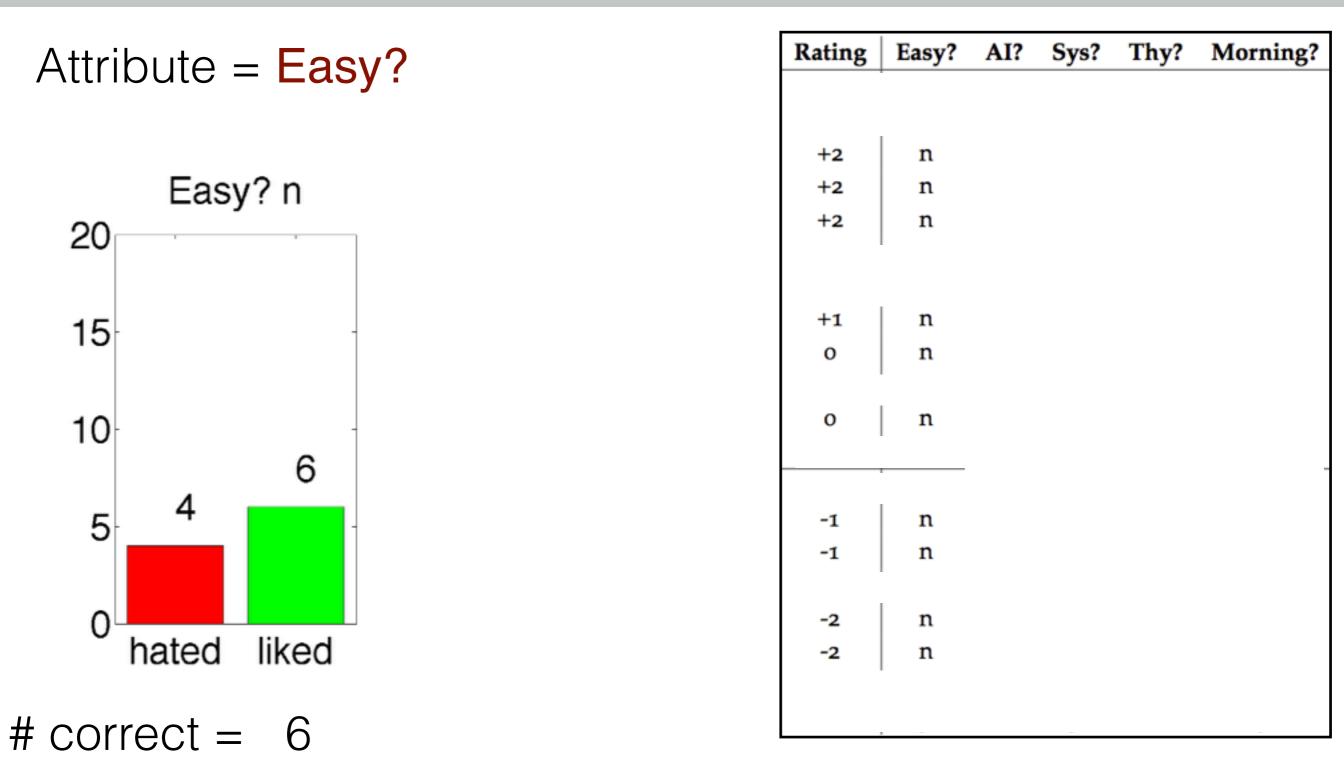


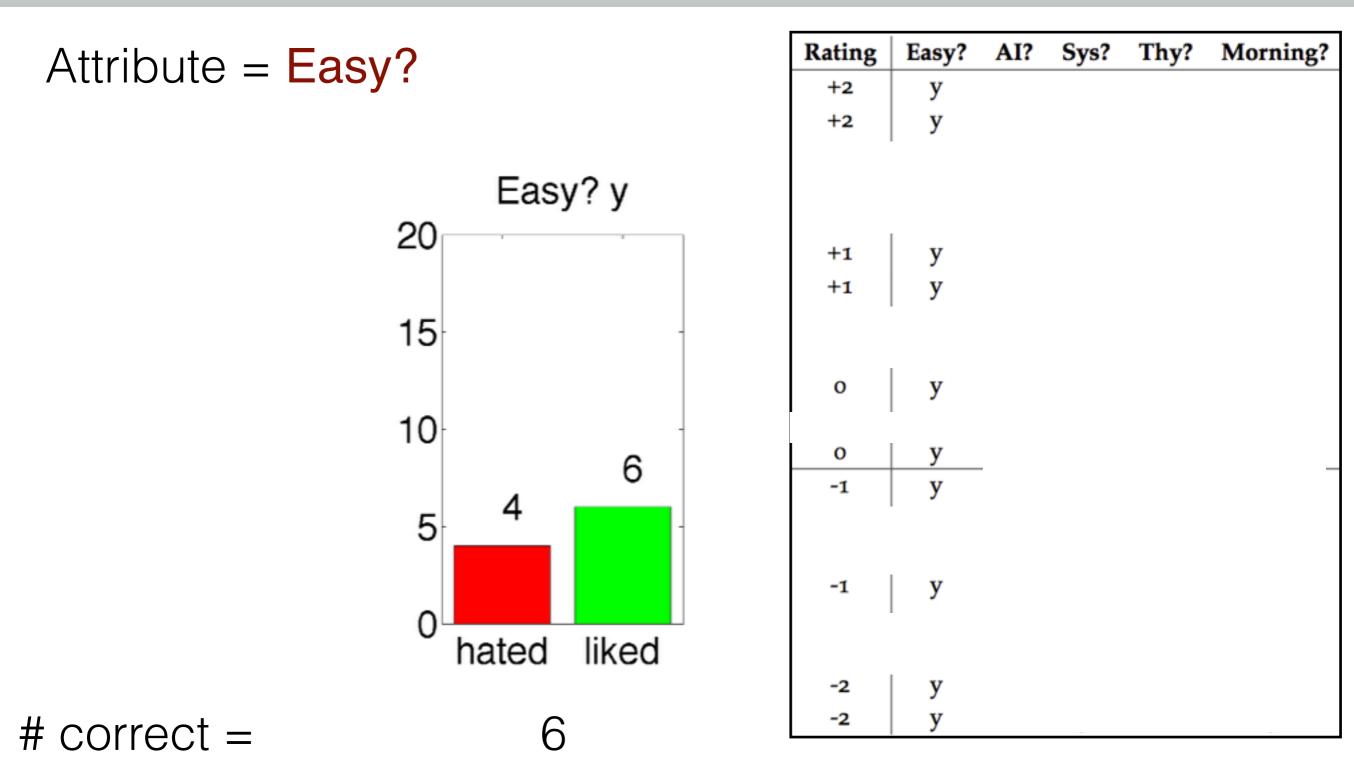
Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у	у	y n y		n
+2	у	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	У	n
+2	n	у	У	n	У
+1	у	у	n	n	n
+1	у	у	n	У	n
+1	n	у	n	У	n
о	n	n	n	n	У
о	у	n	n	У	У
о	n	у	n	У	n
0	у	у	У	У	У
-1	у	у	У	n	У
-1	n	n	У	У	n
-1	n	n	У	n	у
-1	у	n	У	n	У
-2	n	n	у	У	n
-2	n	у	у	n	у
-2	У	n	У	n	n
-2	у	n	у	n	у

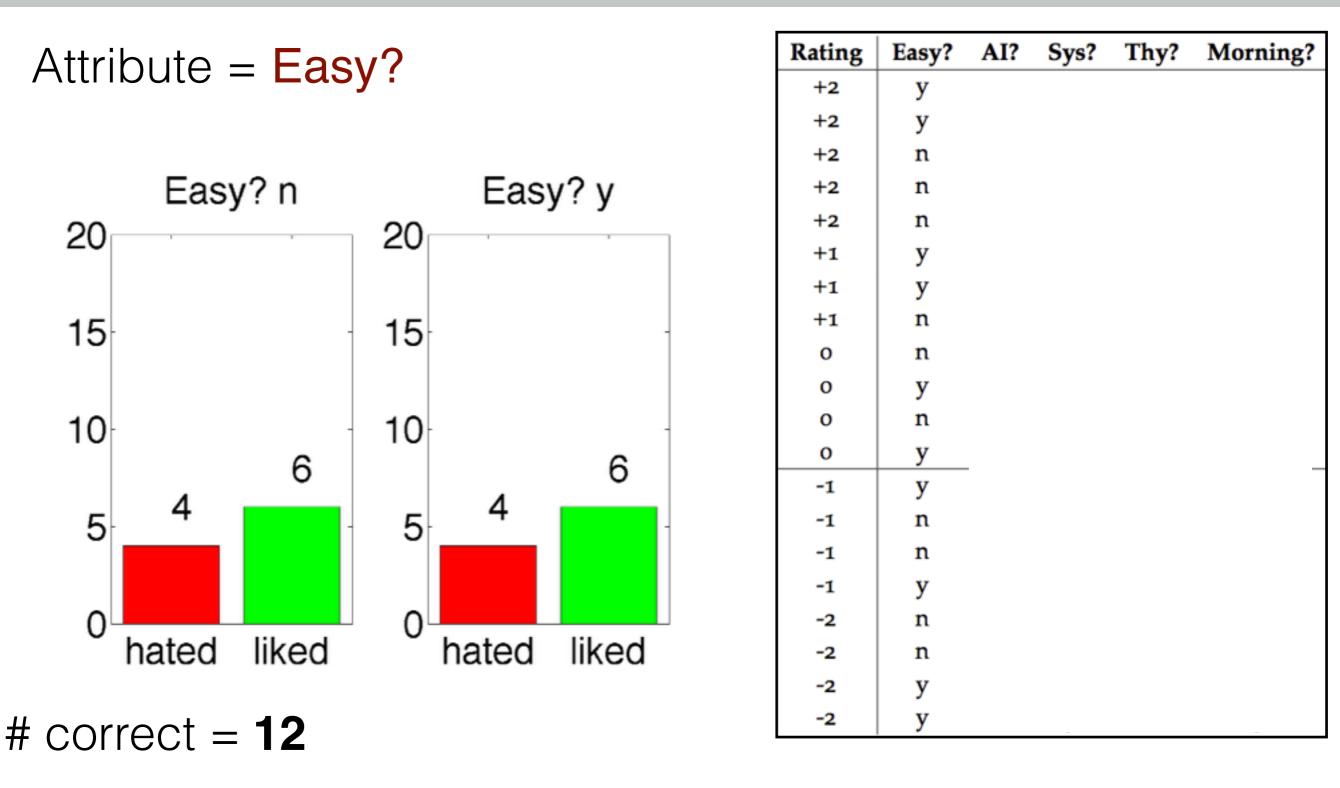
Subhransu Maji (UMASS)

Attribute = **Easy**?

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у				
+2	у				
+2	n				
+2	n				
+2	n				
+1	у				
+1	у				
+1	n				
0	n				
0	у				
0	n				
0	У				
-1	У				-
-1	n				
-1	n				
-1	у				
-2	n				
-2	n				
-2	у				
-2	у				-

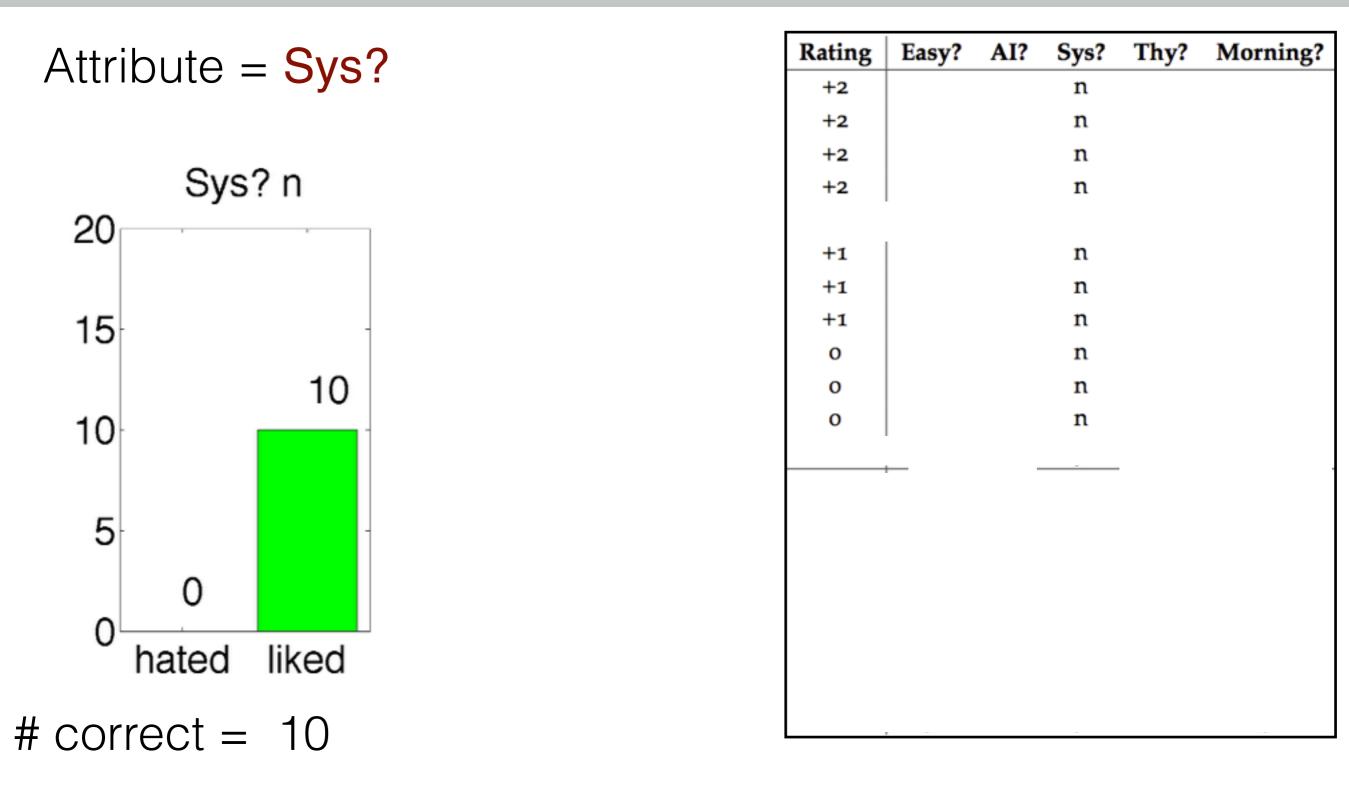


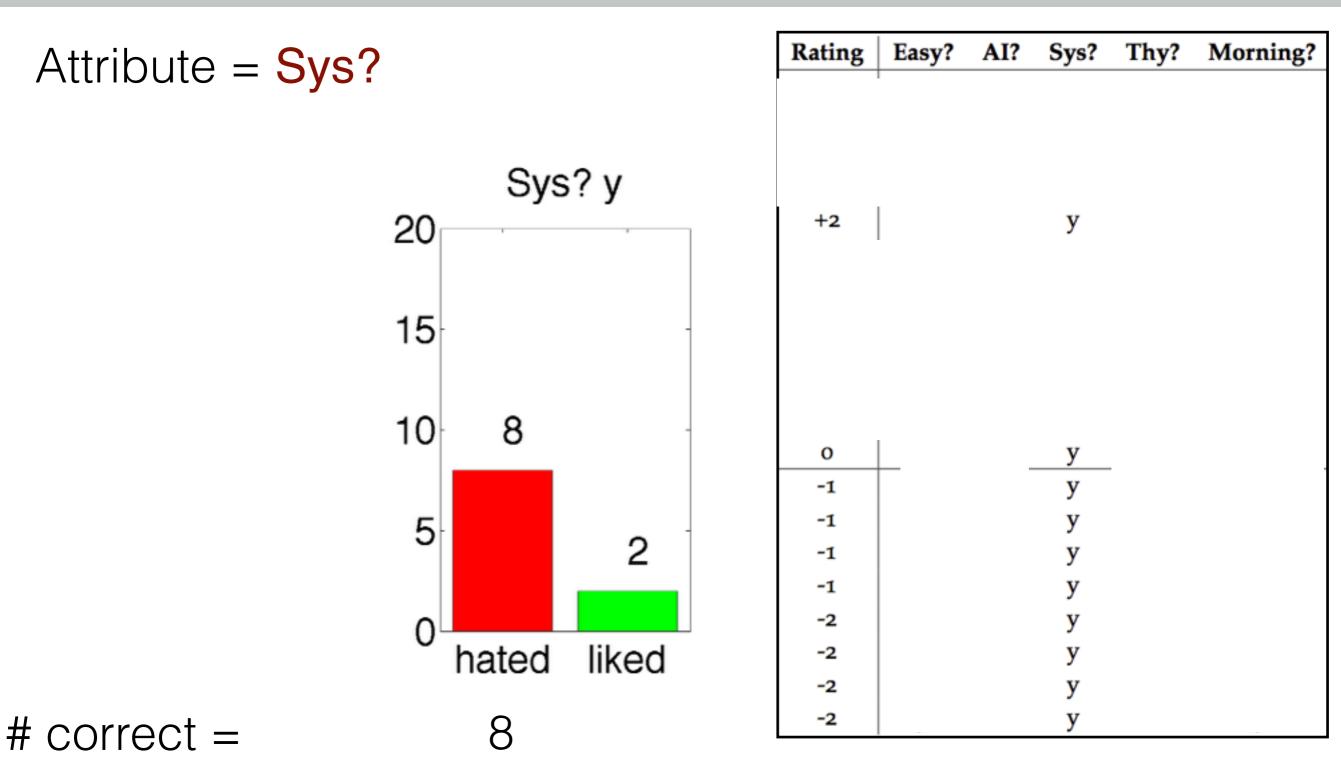




Attribute = **Sys**?

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2			n		
+2			n		
+2			n		
+2			n		
+2			У		
+1			n		
+1			n		
+1			n		
о			n		
о			n		
0			n		
о		_	У		
-1			У		
-1			У		
-1			У		
-1			у		
-2			у		
-2			у		
-2			у		
-2	_		у		_





Attri	ihute -	- Svs	2				Rating	Easy?	AI?	Sys?	Thy?	Morning?
	Attribute = Sys?									n		
							+2			n		
							+2			n		
	Sys	? N		Sys	s? y		+2			n		
20			20			1	+2			У		
							+1			n		
							+1			n		
15		-	15			-	+1			n		
							0			n		
		10					0			n		
10		-	10	8		-	0			n		
							0		-	у		
							-1			У		
5		-	5		•	_	-1			У		
•			•		2		-1			У		
	0						-1			У		
0			0				-2			У		
Ŭ	hated	liked	Ŭ	hated	liked		-2			У		
							-2			у		
cor	correct = 18							_		у		-

#

Picking the best attribute

CMPSCI 689

Subhransu Maji (UMASS)

Decision tree train

Algorithm 1 DECISIONTREETRAIN(data, remaining features)

1:	$guess \leftarrow most frequent answer in data$	// default answer for this data							
2:	if the labels in <i>data</i> are unambiguous the	en e							
3:	return LEAF(guess)	// base case: no need to split further							
4:	else if <i>remaining features</i> is empty then								
5:	return LEAF(guess)	<pre>// base case: cannot split further</pre>							
6:	else	// we need to query more features							
7:	for all $f \in remaining$ features do								
8:	$NO \leftarrow$ the subset of <i>data</i> on which	f=no							
9:	$YES \leftarrow$ the subset of <i>data</i> on which <i>f</i> =yes								
10:	<i>score</i> [<i>f</i>] \leftarrow # of majority vote answers in <i>NO</i>								
11:	+ # of majority vote answers in YES								
	// the accuracy	y we would get if we only queried on f							
12:	end for								
13:	$f \leftarrow$ the feature with maximal <i>score</i> (f)								
14:	$NO \leftarrow$ the subset of <i>data</i> on which <i>f</i> =	по							
15:	$YES \leftarrow$ the subset of <i>data</i> on which <i>f</i> =yes								
16:	<i>left</i> \leftarrow DecisionTreeTrain (<i>NO</i> , <i>remaining features</i> $\setminus \{f\}$)								
17:	$right \leftarrow DecisionTreeTrain(YES, r)$	emaining features $\setminus \{f\}$)							
18:	return NODE(f, left, right)								
19:	end if								

Decision tree test

Algorithm 2 DECISIONTREETEST(*tree, test point*)

- 1: if *tree* is of the form LEAF(*guess*) then
- 2: return guess
- ^{3:} **else if** *tree* is of the form NODE(*f*, *left*, *right*) **then**
- 4: **if** f = yes in test point **then**
- 5: return DECISIONTREETEST(left, test point)
- 6: else
- 7: **return DECISIONTREETEST**(*right*, *test point*)
- 8: end if
- 9: end if

- \bullet Loss function: $\ell(y, \hat{y})$
- The way we measure performance of the classifier
 - Examples:
 - Regression: squared loss: $\ell(y, \hat{y}) = (y \hat{y})^2$
 - or, absolute loss: $\ell(y,\hat{y}) = |y \hat{y}|$
 - Binary classification: zero-one loss

$$\ell(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{otherwise} \end{cases}$$

Multiclass classification: also, zero-one loss

- \bullet Loss function: $\ell(y, \hat{y})$
- \bullet Data generating distribution: $\mathcal{D}(\mathbf{x},y)$
 - $\mathcal{D}(\mathbf{x},y)$: probability distribution from which the data comes from
 - Assigns high probability to reasonable (\mathbf{x},y) pairs
 - Assigns low probability to unreasonable (\mathbf{x}, y) pairs
 - Examples:
 - Reasonable \mathbf{x} : "Intro to Python"
 - Unreasonable \mathbf{x} : "Intro to Quantum Pottery"
 - Unreasonable (\mathbf{x}, y) : (Al, unlike)

- \bullet Loss function: $\ell(y, \hat{y})$
- Tata generating distribution: $\mathcal{D}(\mathbf{x},y)$
 - $\mathcal{D}(\mathbf{x},y)$: probability distribution from which the data comes from
 - Assigns high probability to reasonable (\mathbf{x},y) pairs
 - Assigns low probability to unreasonable (\mathbf{x}, y) pairs
 - Examples:
 - Reasonable \mathbf{x} : "Intro to Python"
 - Unreasonable \mathbf{x} : "Intro to Quantum Pottery"
 - Unreasonable (\mathbf{x}, y) : (Al,unlike)
- \bullet We don't know what ${\mathcal D}$ is!
- All we have is access to training samples drawn from \mathcal{D} $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$

Loss function: ℓ(y, ŷ)
Training samples: (x₁, y₁), (x₂, y₂), ..., (x_N, y_N) drawn from an unknown distribution D

• Learning problem: Compute a function f that minimizes the expected loss ϵ over the distribution $\mathcal{D}(\mathbf{x}, y)$

$$\varepsilon \triangleq \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\ell(\mathbf{y},f(\mathbf{x}))] = \sum_{(\mathbf{x},\mathbf{y})} \mathcal{D}(\mathbf{x},\mathbf{y})\ell(\mathbf{y},f(\mathbf{x}))$$

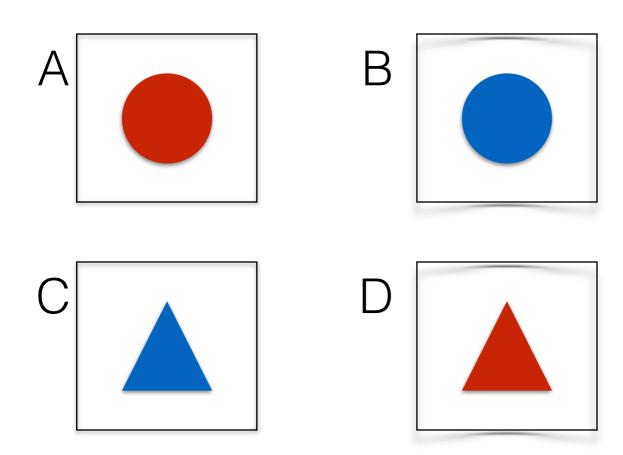
Training error
$$\hat{\epsilon} \triangleq \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n))$$

Subhransu Maji (UMASS)

CMPSCI 689

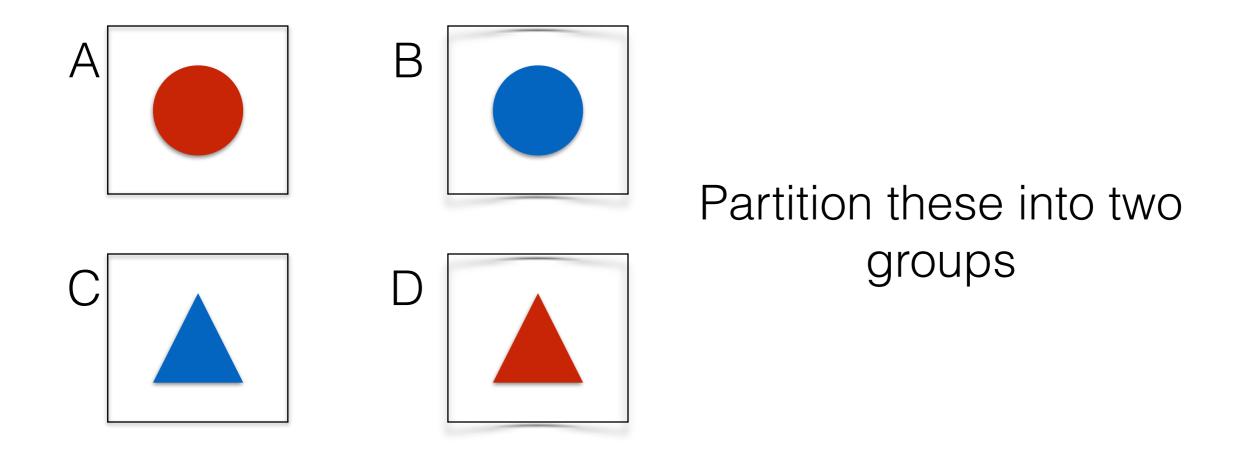
• What do we know *before* we see the data?

• What do we know *before* we see the data?



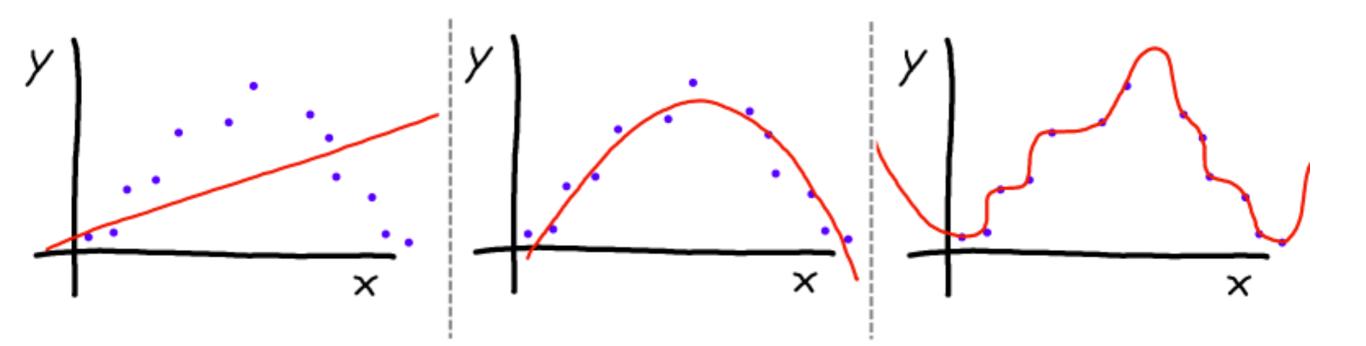
Partition these into two groups

What do we know before we see the data?

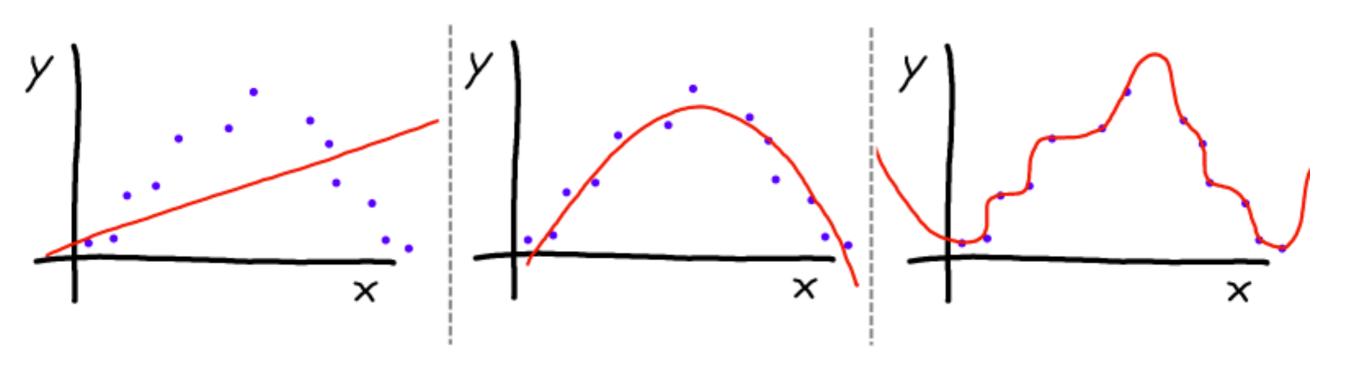


• What is the inductive bias of the decision tree algorithm?

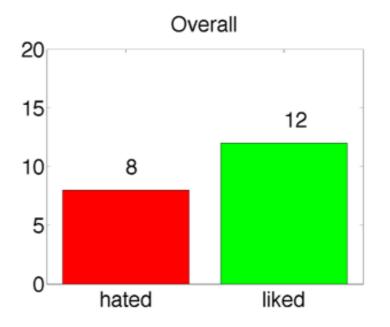
Underfitting and overfitting



Underfitting and overfitting



- Decision trees:
 - Underfitting: an empty decision tree
 - ➡ Test error: ?
 - Overfitting: a full decision tree
 - ➡ Test error: ?



Model, parameters and hyperparameters

- Model: decision tree
- Parameters: learned by the algorithm
- Hyperparameter: depth of the tree to consider
 - A typical way of setting this is to use *validation* data
 - Usually set 2/3 training and 1/3 testing
 - Split the training into 1/2 training and 1/2 validation
 - Estimate optimal hyperparameters on the validation data

training	validation	testing

Summary

- Generalization is key
- Inductive bias is needed to generalize beyond training examples
- Decision tree model
 - a greedy learning algorithm
 - Inductive bias of the learner
 - Underfitting and overfitting
 - Model, parameters, and hyperparameters

Slides credit

 Many slides are adapted from the book "Course in Machine Learning" by Hal Daume