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What does it mean to learn?!
Machine learning framework!
Decision tree model!
‣ a greedy learning algorithm 
Formalizing the learning problem!
Inductive bias!
Underfitting and overfitting!
Model, parameters, and hyperparameters

Overview
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Alice has just begun taking a machine learning course
Bob, the instructor has to ascertain if Alice has “learned” the topics 
covered, at the end of the course
A common way of doing this to give her an “exam”
What is a reasonable exam?
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Alice has just begun taking a machine learning course
Bob, the instructor has to ascertain if Alice has “learned” the topics 
covered, at the end of the course
A common way of doing this to give her an “exam”
What is a reasonable exam?
‣ Choice 1: History of pottery

➡ Alice’s performance is not indicative of what she learned in ML
‣ Choice 2: Questions answered during lectures 

➡ Bad choice, especially if it is an open book

A good test should test her ability to answer “related” but “new” 
questions on the exam
This tests weather Alice has an ability to generalize
‣ Generalization is a one of the central concepts in ML

What does it mean to learn?
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What does it mean to learn?

4



Subhransu Maji (UMASS)CMPSCI 689 /27

Student ratings of undergrad CS courses
Collection of students and courses
The evaluation is a score -2 (terrible), +2 (awesome)
The job is to say if a particular student (say, Alice) will like a particular 
course (say, Algorithms)
We are given historical data, i.e., course ratings in the past, we are 
trying to predict unseen ratings (i.e., the future)
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Student ratings of undergrad CS courses
Collection of students and courses
The evaluation is a score -2 (terrible), +2 (awesome)
The job is to say if a particular student (say, Alice) will like a particular 
course (say, Algorithms)
We are given historical data, i.e., course ratings in the past, we are 
trying to predict unseen ratings (i.e., the future)

We can ask if:
‣ Will Alice will like History of pottery?

➡ Unfair, because the system doesn’t even know what that is
‣ Will Alice like AI?

➡ Easy if Alice took AI last year and said it was +2 (awesome)
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Training data:!
‣ Alice in ML course: concepts that she 

encounters in the class 
‣ Recommender systems: past course ratings 
!
Learning algorithm induces a function f  that 
maps examples to labels!
!
The set of new examples is called the “test” set!
‣ Closely guarded secret: it is the final exam 

where the learner is going to be tested 
‣ A ML algorithm has succeeded if its 

performance on the test data is good 
!

We will focus on a simple model of learning 
called a decision tree

Machine learning framework
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The decision tree model of learning
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Classic and natural model of learning

Question: Will an unknown user enjoy an unknown course?!
‣ You: Is the course under consideration in Systems? 
‣ Me: Yes 
‣ You: Has this student taken any other Systems courses?  
‣ Me: Yes 
‣ You: Has this student liked most previous Systems courses? 
‣ Me: No 
‣ You: I predict this student will not like this course. 

The decision tree model of learning
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Classic and natural model of learning

Question: Will an unknown user enjoy an unknown course?!
‣ You: Is the course under consideration in Systems? 
‣ Me: Yes 
‣ You: Has this student taken any other Systems courses?  
‣ Me: Yes 
‣ You: Has this student liked most previous Systems courses? 
‣ Me: No 
‣ You: I predict this student will not like this course. 

Goal of learner: Figure out what questions to ask, and in what order, 
and what to predict when you have answered enough questions

The decision tree model of learning
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Recall that one of the ingredients of 
learning is training data!
‣ I’ll give you (x, y) pairs, i.e., set of 

(attributes, label) pairs 
‣ We will simplify the problem by  

➡ {0,+1, +2} as “liked” 
➡ {-1,-2} as “hated” 

Here:!
‣ Questions are features 
‣ Responses are feature values 
‣ Rating is the label 
!
Lots of possible trees to build!
Can we find good one quickly?

Learning a decision tree
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If I could ask one question, what 
question would I ask?!
‣ You want a feature that is most 

useful in predicting the rating of 
the course 

‣ A useful way of thinking about this 
is to look at the histogram of the 
labels for each feature

Greedy decision tree learning
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What attribute is useful?
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What attribute is useful?
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Attribute = Sys?

# correct = 8 
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What attribute is useful?
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Attribute = Sys?

# correct = 18 
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Picking the best attribute
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Decision tree train
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Decision tree test

19



Subhransu Maji (UMASS)CMPSCI 689 /27

Loss function: !
The way we measure performance of the classifier!
‣ Examples: 

➡ Regression: squared loss:  
• or, absolute loss: 

➡ Binary classification: zero-one loss  
!
!
!

➡ Multiclass classification: also, zero-one loss

Formalizing the learning problem
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`(y, ŷ)

`(y, ŷ) = (y � ŷ)2

`(y, ŷ) = |y � ŷ|



Subhransu Maji (UMASS)CMPSCI 689 /27

Loss function:!
Data generating distribution:!
‣              : probability distribution from which the data comes from 

➡ Assigns high probability to reasonable             pairs 
➡ Assigns low probability to unreasonable           pairs 
➡ Examples: 

• Reasonable     : “Intro to Python” 
• Unreasonable    : “Intro to Quantum Pottery” 
• Unreasonable           : (AI,unlike)

Formalizing the learning problem

21
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D
D

We don’t know what      is!!
All we have is access to training samples drawn from 
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Loss function:!
Training samples:                                                    drawn from an 
unknown distribution 

Formalizing the learning problem
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D(x, y)
Learning problem: Compute a function   that minimizes the 
expected loss   over the distribution

f

`(y, ŷ)

D

Training error

✏
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Inductive bias
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What do we know before we see the data?
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What do we know before we see the data?

What is the inductive bias of the decision tree algorithm?

Inductive bias
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Underfitting and overfitting
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!
Decision trees:!
‣ Underfitting: an empty decision tree  

➡ Test error: ? 
‣ Overfitting: a full decision tree  

➡ Test error: ?

Underfitting and overfitting
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Model: decision tree!
Parameters: learned by the algorithm!
Hyperparameter: depth of the tree to consider!
‣ A typical way of setting this is to use validation data 
‣ Usually set 2/3 training and 1/3 testing 

➡ Split the training into 1/2 training and 1/2 validation 
➡ Estimate optimal hyperparameters on the validation data

Model, parameters and hyperparameters
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Generalization is key!
Inductive bias is needed to generalize beyond training examples!
Decision tree model!
‣ a greedy learning algorithm 
‣ Inductive bias of the learner 
‣ Underfitting and overfitting 
‣ Model, parameters, and hyperparameters

Summary
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Many slides are adapted from the book “Course in Machine Learning” 
by Hal Daume

Slides credit
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