
Mini-project 2
CMPSCI 689 Spring 2015

Due: Tuesday, April 07, in class

Guidelines

Submission. Submit a hardcopy of the report containing all the figures and printouts of code in class. For
readability you may attach the code printouts at the end of the solutions. Submissions may be 48 hours
late with 50% deduction. Submissions more than 48 hours after the deadline will be given zero. Late
submissions should be emailed to the TA as a pdf.

Plagiarism. We might reuse problem set questions from previous years, covered by papers and webpages,
we expect the students not to copy, refer to, or look at the solutions in preparing their answers. Since this is
a graduate class, we expect students to want to learn and not google for answers.

Collaboration. The homework must be done individually, except where otherwise noted in the assign-
ments. ’Individually’ means each student must hand in their own answers, and each student must write
their own code in the programming part of the assignment. It is acceptable, however, for students to col-
laborate in figuring out answers and helping each other solve the problems. We will be assuming that,
as participants in a graduate course, you will be taking the responsibility to make sure you personally
understand the solution to any work arising from such a collaboration.

Using other programming languages. All of the starter code is in Matlab which is what we expect you to
use. You are free to use other languages such as Octave or Python with the caveat that we won’t be able to
answer or debug non Matlab questions.

1



The MNIST dataset

The dataset for all the parts of this homework can be loaded into Matlab by typing load(digits.mat).
This is similar to the one used in mini-project 1, but contains examples from all 10 digit classes. In addition,
the data is split into train, val and test sets.

For each split, the features and labels are in variables x and y respectively. For e.g., data.train.x is
an array of size 784 × 1000 containing 1000 digits, one for each column of the matrix. There are 100 digits
each from classes 0, 1, . . . , 9. Class labels are given by the variable data.train.y. The val set contains 50
examples from each class, and the test set contains 100 examples from each class. This is a subset of the
much larger MNIST dataset 1.

You can visualize the dataset using montageDigits(x) function. For example, here is the output of
montageDigits(data.train.x). Tip: montageDigits(x) internally uses the montage command in
Matlab which has a size option controlling the number of rows and columns of the output.

Evaluation

For various parts of the homework you will be asked to report the accuracy and confusion matrix. The
accuracy is simply the fraction of labels you got right, i.e., 1

N

∑N
k=1[yk = ypredk] . The confusion matrix

C is a 10 × 10 array where Cij =
∑N

k=1[yk = i] · [ypredk = j]. The function provided in the codebase
called [acc, conf] = evaluateLabels(y, ypred, display) returns the accuracy and confusion
matrix. If display=true, the code also displays the confusion matrix as seen below:

1http://yann.lecun.com/exdb/mnist/
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1 Multiclass to binary reductions

In the previous homework you implemented a binary classifier using averagedPerceptonTrain and
preceptronPredict functions. In this part you will extend these to the multiclass setting using one-vs-
one and one-vs-all reductions. The codebase contains an implementation of the above two functions. You
are welcome to use your own implementation, but in case you decide to use the provided functions here
are the details.

The function model = averagedPerceptronTrain(x, y, param) takes as input x, y and runs
the averaged preceptron training for param.maxiter iterations. The output model contains the learned
weights and some other fields that you can ignore at this point.

The function [y,a]=preceptronPredict(model, x) returns the predictions y and the activations
a = model.wTx.

The entry code for this part is in the first half of the file runMulticlassReductions.m. It loads the
data and initializes various parameters.

1.a Multiclass training

Implement a function model = multiclassTrain(x, y, param); that takes training data x,y and
return a multi-class model. Right now you will train linear classifiers using averagedPerceptronTrain,
but later you will extend this to use non-linear classifiers. Your code will do this by setting the parameter
param.kernel.type=’linear’.

1. [10 points] When param.type=’onevsall’ the code should return 10 one-vs-all perceptron clas-
sifiers, one for each digit class. You may find cell arrays in Matlab useful for this part.

2. [10 points] When param.type=’onevsone’ the code should return (10 choose 2) = 45 one-vs-one
perceptron classifiers, one for each pair of digit classes.

1.b Multiclass prediction

Implement a function ypred = multiclassPredict(model, x, param); that returns the class la-
bels for the data x.

1. [5 points] When param.type=’onevsall’ the code should predict the labels using the one-vs-all
prediction scheme, i.e., pick the class which has the highest activation for each data point.

2. [5 points] When param.type=’onevsone’ the code should predict the labels using the one-vs-one
prediction scheme, i.e., pick the class that wins the most number of times for each data point.

1.c Experiments

On the train set learn one-vs-one and one-vs-all classifiers and answer the following questions:

1. [2 points] On the val set estimate the optimal number of iterations. You may find that the ac-
curacy saturates after a certain number of iterations. Report the optimal value you found for the
onevsone/onevsall classifiers? Set param.maxiter to that value.

2. [2 points] What is the test accuracy of onevsone/onevsall classifier on the dataset?

3. [2 points] Show the confusion matrices on the test set for onevsone/onevsall classifiers. What
pair of classes are the most confused for each classifier, i.e., i and j that have the maxij{Cij + Cji} ?
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2 Kernelized perceptrons

In this part you will extend the perceptron training and prediction to use polynomial kernels. A polynomial
kernel of degree d is defined as:

Kd
(poly)(x, z) = (a+ bxT z)d (1)

Here, a ≥ 0, b > 0 and d ∈ {1, 2, . . . ,∞} are hyperparamters of the kernel.

2.a Training kernelized perceptrons

[10 points] In this part you will implement a kernelized version of averaged perceptron in the function
model = kernelizedAveragedPerceptronTrain(x, y, param). In class we extended the per-
ceptron training to require only dot products, or kernel evaluations between data points. However, it is
often more efficient to precompute the kernel values between all pairs of input data to avoid repeated
kernel evaluations.

Write a function K=kernelMatrix(x, z, param) that returns a matrix with Kij = kernel(xi, zj).
The kernel is specified by param.kernel.type. It is important to implement this efficiently, for example
by avoiding for loops. You may find the Matlab function pdist useful for this.

The output of the training is a set of weights α for each training example. However, this alone is
not sufficient for prediction since it requires dot products with the training data. You may find it con-
venient to store the training data for each classifier in the model itself, for example in a field such as
model.x, and the weights α in model.a. The entry code for this part is in the second half of the file
runMulticlassReductions.m.

Tip: When the kernel is linear then the classifier trained using kernelized averaged perceptron should match the
results (up to numerical precision) using averaged perceptron. With polynomial kernels you can do this by setting
a = 0, b = 1 and d = 1.

2.b Predictions using kernelized preceptrons

[5 points] Implement [y,a] = kernelizedPerceptronPredict(model, x, param), which takes
the model and features as input and returns predictions and activations. Once again you may first compute
the kernel matrix using K=kernelMatrix(model.x, x, param) function you implemented earlier and
then multiply model.a to compute activations.

2.c Going multiclass

[5 points] Integrate the above two functions with multiclassTrain and multiclassPredict func-
tions you implemented in problem 1 to use kernelized perceptrons as the binary classifier. The code should
use perceptrons when param.kernel.type=’linear’ and kernelized perceptrons otherwise. The code
passes the parameters of the polynomial kernel in the field param.kernel.poly.

2.d Experiments

Train a multiclass classifier using a polynomial kernel with a = 1, b = 1 and d = 4 as the kernel parameters.
This is a degree 4 polynomial kernel. Run the kernelized perceptron for 100 iterations during training and
answer the following questions.

1. [2 points] What is the test accuracy of onevsone/onevsall classifier on the dataset?

2. [2 points] Show the confusion matrices on the test set for onevsone/onevsall classifiers. What
classes are the most confused?
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3 Multiclass naive Bayes classifier

For this part you will train a naive Bayes classifier for multiclass prediction. Assume that for a given data
x the ith feature x(i), for class j, is generated according to a Gaussian distribution with class specific means
µij and variances σ2

ij , i.e.,

P (x(i)|Y = j) =
1√

2πσij
exp

(
−||x(i) − µij ||2

2σ2
ij

)
. (2)

In addition each class is generated using a multinomial, i.e,

P (Y = j) = θj . (3)

1. [4 points] Write down the log-likelihood of the training data (x1, y1), (x2, y2), . . . (xn, yn) in terms of
the parameters.

2. [2 points] What is the maximum likelihood estimate of the parameter θj?

3. [2 points] What is the maximum likelihood estimate of the parameter µij?

4. [2 points] What is the maximum likelihood estimate of the parameter σij?

3.a Experiments

You will implement a naive Bayes model for mulitclass digit classification. The entry code for this part is
in runNaiveBayes.m. Before you implement the model, there is one issue to take care of. Suppose that
pixel i is always zero for a class j, then the MLE of the σij for that pixel and class will be zero. This leads
to probabilities that are zero for any pixel value not equal to zero. Thus a little bit of noise in the pixel can
make the total probability zero. One way to deal with this problem is to add a small positive constant τ to
the MLE of the σij parameter, i.e.,

σ̂2
ij ← σ̂2

ij + τ. (4)

This will assign a small non-zero probability to any noisy pixel you might see in the test data. In terms
of Bayesian estimation this is a maximum a-posteriori (MAP) estimate because τ acts as a prior to the σ
parameter.

[10 points] Implement the function model=naiveBayesTrain(x, y, τ) that estimates the parame-
ters of the naive Bayes model using the smoothing parameter τ .

[5 points] Implement the function ypred=naiveBayesPredict(model,x) that predicts the class
with the highest joint probability P (x, Y = k).

Train these models on the train set using τ = 0.01 and report accuracies on the val, test set.
Tip: Compute log probabilities to avoid numerical underflow.
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4 Multiclass logistic regression

We can easily extend the binary logistic regression model to handle multiclass classification. Let’s assume
we have K different classes, and posterior probability for class k is given by:

P (Y = k|X = x) =
exp(wT

k x)∑K
i=1 exp(w

T
i x)

. (5)

Our goal is to estimate the weights using gradient ascent. We will also define regularization on the param-
eters to avoid overfitting and very large weights.

1. [4 points] Write down the log conditional likelihood of the labels, L(w1, ...,wK) with L2 regu-
larization on the weights. Use λ as the tradeoff parameter between the L and regularization, i.e.,
objective = L − λ× regularization. Show your steps.

2. [4 points] Note that there is not a closed form solution to maximize the log conditional likelihood,
L(w1, ...,wK) with respect to wk. However, we can still find the solution with gradient ascent by using
partial derivatives. Derive the expression for the ith component in the vector gradient ofL(w1, ...,wK)
with respect to wk.

3. [2 points] Beginning with the initial weights of 0, write down the update rule for wk, using η for the
step size.

4. [2 points] Will the solution converge to a global maximum?

5. [20 points] Train a multiclass logistic regression using η = 0.01 and λ = 0.01 on the training set
and run batch gradient accent for param.maxtier=100 iterations. Recall that in batch gradients, we
sum the gradients across all training examples. In Matlab you can do all the computations efficiently
using matrix multiplications. For example, on my laptop the entire training (100 iterations) takes less
a second. Report accuracy on the test set. The entry code for this part is in runMulticlassLR.m.

5 Two layer neural network

Consider a two layer neural network with a hidden layer of H units and K output units, one for each class.
Assume that each hidden unit is connected to all the inputs and a bias feature. Use the sigmoid function as
the link function.

σ(z) =
1

1 + exp(−z)
(6)

The output units combines the hidden units using multi-class logistic regression as in the earlier problem.

1. [4 points] Write down the log-likelihood of the labels given all the weights with a L2 regularization
on the weights. Use λ as the tradeoff parameter between the L and regularization, i.e., objective =
L − λ× regularization. Show your steps.

2. [4 points] Derive the equations for gradients for all the weights. The gradients of the second layer
weights resemble the earlier problem, while that for the hidden layer can be obtained by back-
propagation (or chain-rule of gradients).

3. [2 points] Suppose you run gradient ascent, will the solution converge to a global maximum?

4. [20 points] Train a two layer network with 100 hidden units using η = 0.001 and λ = 0.01 on the
training set and run batch gradient ascent for param.maxtier=1000 iterations. Once again you can
implement all the computations using matrix multiplications. My implementation takes about 30 sec-
onds for the entire training. Tip: you can do entry-wise matrix multiplication using .∗ operation. Initialize
the weights randomly to small weights using the Matlab function randn(.,.)*0.01. Report accu-
racy on the test set. Tip: You can implement this part with small modifications to the multiclass LR code
from the earlier part. The entry code for this part is in runMulticlassNN.m.

Tip: For the previous problem and this one, make sure your objective increases after each iteration.
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Checkpoints

To help with debugging here are the outputs of my implementation. The neural network results might vary
slightly due to randomness in initialization. You might be able to get better performance by tuning the
hyperparameters. It might be tempting to tune them on the test data, but that would be cheating! Only use
the validation data for this.

>> runMulticlassReductions
OneVsAll:: Perceptron (linear):: Validation accuracy: 75.80%
OneVsAll:: Perceptron (linear):: Test accuracy: 75.70%
OneVsOne:: Perceptron (linear):: Validation accuracy: 86.40%
OneVsOne:: Perceptron (linear):: Test accuracy: 84.30%
OneVsAll:: Perceptron (poly):: Validation accuracy: 88.60%
OneVsAll:: Perceptron (poly):: Test accuracy: 87.30%
OneVsOne:: Perceptron (poly):: Validation accuracy: 88.20%
OneVsOne:: Perceptron (poly):: Test accuracy: 87.00%

>> runNaiveBayes
NaiveBayes:: Validation accuracy: 75.60%
NaiveBayes:: Test accuracy: 76.00%

>> runMulticlassLR
Multiclass LR:: Validation accuracy: 85.40%
Multiclass LR:: Test accuracy: 82.70%

>> runMulticlassNN
Multiclass LR:: Validation accuracy: 87.00%
Multiclass LR:: Test accuracy: 85.20%
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