Mini-project 1
CMPSCI 689 Spring 2015

Due: Wednesday March4;at11:55pm
Thursday, March 5, at 4:00 pm

Guidelines

Submission. Submit asinglepdf-doctment-viamoodle a hardcopy at the CS main office that includes your

solutions, figures and printouts of code. For readability you may attach the code printouts at the end of the
solutions. There will be a “drop box” at the main office in the reception area where you should place your
report. Submissions may be 48 hours late with 50% deduction. Submissions more than 48 hours after the
deadline will be given zero. Late submissions should be emailed to the TA as a pdf.

Plagiarism. We might reuse problem set questions from previous years, covered by papers and webpages,
we expect the students not to copy, refer to, or look at the solutions in preparing their answers. Since this is
a graduate class, we expect students to want to learn and not google for answers.

Collaboration. The homework must be done individually, except where otherwise noted in the assign-
ments. ‘Individually’ means each student must hand in their own answers, and each student must write
their own code in the programming part of the assignment. It is acceptable, however, for students to col-
laborate in figuring out answers and helping each other solve the problems. We will be assuming that,
as participants in a graduate course, you will be taking the responsibility to make sure you personally
understand the solution to any work arising from such a collaboration.

Using other programming languages. All of the starter code is in Matlab which is what we expect you to
use. You are free to use other languages such as Octave or Python with the caveat that we won’t be able to
answer or debug non Matlab questions.

Changelog

e 3/1/15: Updated instructions for submission and changed deadline to Thursday.

1 Decision Trees

1l.a Entropy and classification error

In class we used classification error to pick the best attribute to split the data. A different criteria is to use
the Entropy. Given a random variable Y with probability distribution p(y) the entropy H(Y") is defined as

H(Y) ==Y py)log. p(y).

1. [0.5 points] Show that for a binary random variable Y € {yes, no} with p(Y" = yes) = 6, the entropy
is
H(Y)=—-0log,(0) — (1 —6)log.(1—0).

2. [0.5 points] What is the best classification error (E [§ # Y]) of any predictor for a binary variable Y’
with P(Y = yes) = 6?

3. [1 point] Plot the above entropy and classification error as a function of # on the same figure. Scale
the maximum y-value of both the plots to 0.5 to make them comparable. You may find the Matlab
commands: figure; hold on; plot (x, y) useful

From the above it should be apparent that entropy and classification error are similar (up to a scale) and an
alternate way to select features to split is to pick one that offers the highest information gain (or reduction
in Entropy) i.e.,

InfoGain(X) = H(Y) — H(Y|X)

This is the criteria that for the ID3 algorithm in the Quinlan 1986 paper.

1.b Train a decision tree

Untergang der Titanic by Willy Stower, 1912

Below is a dataset of the 2201 passengers and crew aboard the RMS Titanic, which disastrously sunk on
April 15th, 1912. For every combination of three variables (Class, Gender, Age), we have the counts of how
many people survived and did not. We’ve also included rollups on individual variables for convenience.

Next to the table is a mosaic plot', which simply visualizes the counts as proportional areas.

[5 points] We are interested in predicting the outcome variable Y, survival, as a function of the input
features C, G, A.

Use the information gain criterion to choose which of the three features C, G or A to use at the root of
the decision tree. In fact, your task here is to learn a depth 1 decision tree that uses only this root feature to
classify the data (such depth-1 decision trees are often called “decision stumps”).

Please show all work, including the information gain calculations for each candidate feature.

http://en.wikipedia.org/wiki/Mosaic_plot

http://en.wikipedia.org/wiki/Mosaic_plot

Gender

Class Gender Age No Yes | Total Male Female -
Ist Male Child 0 5 5 4,; l:- _ E
1st Male Adult 118 57| 175 o 2
Ist Female Child 0o 1 1 (Il 5
1st Female Adult 4 140 | 144 ”
Lower Male Child 35 24 59 &y 2
Lower Male Adult 1211 281 | 1492 3 5
Lower Female Child 17 27 44 <
Lower Female Adult 105 176 281

totals: 1490 711 | 2201

No Yes No Yes
Survival

Class No Yes | Total Gender No Yes | Total Age No Yes | Total
1st 122 203 325 Male 1364 367 | 1731 Child 52 57 109
Lower 1368 508 | 1876 Female 126 344 470 Adult 1438 654 | 2092

Hint: to make information gain easier to calculate, you may wish to use this formula for conditional
entropy:

~H(Y|X) =Y plx,y)log, p(y|z)

z,y

1.c Evaluation

1. [1 point] What is the accuracy rate of your decision stump (depth 1 decision tree) on the training
data?

2. [1 point] If you grew a complete decision tree that used all three variables, what would its accuracy
be over the training data? [Hint: you don’t actually need to grow the tree to figure out the answer.]

1.d Decision Trees and Equivalent Boolean Expressions

[1 point] The decision tree is a function h(C, G, A) that outputs a binary value. Therefore, it can be repre-
sented as a boolean logic formula.

Write a decision tree that is equivalent to the following boolean formula (i.e., a decision tree that outputs
1 when this formula is satisfied, and 0 otherwise).

(CA=AA=G)V(CAA)V(-CAG)

1.e Model complexity and data size

Let’s think about a situation where there is a true boolean function underlying the data, so we want the
decision tree to learn it. We'll use synthetic data generated by the following algorithm. To generate an (%, y)
pair, first, six binary valued x1, ..., x¢ are randomly generated, each independently with probability 0.5.
This six-tuple is our Z. Then, to generate the corresponding y value:

f(f) =21 V (—\331 N X9 A 1‘6) 1
y = f(Z) with prob 6, else (1 — f(Z)) (2)

So Y is a possibly corrupted version of f(X), where the parameter ¢ controls the noisiness. § = 1 is
noise-free. § = 0.51 is very noisy.

A

1.f

[0.5 points] Whatis P(Y = 1| (X1 V (X1 A X2 A Xg)) =1)?
[0.5 points] Whatis P(Y =1 | (X1 V (X1 A X2 A Xg))) =1)?
[1 point] Does P(Y = 1|X, = 1) = P(Y = 1)? Why?

[1 point] Does P(Y =1|X4 =1) = P(Y =1)? Why?

[1 point] Consider learning a decision tree classifier . Assume the learning algorithm outputs a
decision tree h that exactly matches f (despite the noise in the training data, it has so much data that
it still learns f correctly). Assume the training data was generated by the above process. What should
h’s accuracy rate be on the training data?

[1 point] Assume new test data is also generated from the same process. What should its accuracy
rate be on this new test data (assuming plenty of test data)?

[1 point] Decision trees can overfit, so let’s think about controlling the tree’s model complexity. In-
stead of using pruning like we learned in lecture, here we use a maximum depth parameter.

Assuming a very large amount of training data, what’s the smallest maximum-depth setting necessary
to perfectly learn the generating function f?

Train/Test Experiments

Now we experimentally investigate the relationships between model complexity, training size, and classi-
fier accuracy. Get code and test data from: http://www-edlab.cs.umass.edu/~smaji/cmpsci6c89/
proj/pl_code.tar.qgz. The code for this part is inside the dt folder.

We provide a Matlab implementation of ID3 featuring a maxdepth parameter: train_tree(trainX, trainY,
maxdepth). It returns an object representing the classifier, which can be viewed with print_tree(tree). Classify
new data via classify_with_tree(tree, testX). We also provide the simulation function to generate the synthetic
data: generate_data(N, theta), that you can use to create training data. Finally, there is a fixed test set for all
experiments (generated using 6 = 0.9).

See tt1.m for sample code to get started.

Include printouts of your code and graphs.

1.

[1 point] For a depth=3 decision tree learner, learn classifiers for training sets size 10 and 100 (generate
using 6 = 0.9). At each size, report training and test accuracies.

[8 points] Let’s track the learning curves for simple versus complex classifiers.

For maxdepth=1 and maxdepth=3, perform the following experiment. For each training set size
{21,22)...,2'0} generate a training set, fit a tree, and record the train and test accuracies. For each
(depth,trainsize) combination, average the results over 20 different simulated training sets.

Make three learning curve plots, where the horizontal axis is training size, and vertical axis is accuracy.
First, plot the two testing accuracy curves, for each maxdepth setting, on the same graph. For the
second and third graphs, have one for each maxdepth setting, and on each plot its training and testing
accuracy curves. Place the graphs side-by-side, with identical axis scales. It may be helpful to use a
log-scale for training data size.

Next, answer several questions with no more than three sentences each:
[1 point] When is the simpler model better? When is the more complex model better?

[1 point] When are train and test accuracies different? If you're experimenting in the real world and
find that train and test accuracies are substantially different, what should you do?

[2 points] For a particular maxdepth, why do train and test accuracies converge to the same place?
Comparing different maxdepths, why do test accuracies converge to different places? Why does it
take smaller or larger amounts of data to do so?

[3 points] For maxdepths 1 and 3, repeat the same vary-the-training-size experiment with § = 0.6 for
the training data. Show the graphs. Compare to the previous ones: what is the effect of noisier data?

http://www-edlab.cs.umass.edu/~smaji/cmpsci689/proj/p1_code.tar.gz
http://www-edlab.cs.umass.edu/~smaji/cmpsci689/proj/p1_code.tar.gz

2 Perceptron

If you are starting with this question you need to get code and test data from: http://www-edlab.
cs.umass.edu/~smaji/cmpsci689/proj/pl_code.tar.gz. The relevant code for this partis in the
perceptron folder.

Take a look at the file toy.m. The code creates a dataset of size at most 500 points using the function
data = getData(‘toy’, opts). If you peek inside the getData () function you will see that the
labels are being generated using the line z(1) + z(2) = 0 as the decision boundary. Moreover, points
too close to the boundary are removed, i.e., the data separated by a margin of 0.1 (which is controlled by
opts.margin parameter). There are other fields in opt s which we will look into later.

The datahasfieldsdata.train.x, data.train.y, data.test.xanddata.test.y correspond-
ing to training and test, features and labels. You can visualize the data by using plotData (x,y).

2.a Implement the perceptron algorithm

e [10 points] In Matlab, implement a function
w = perceptronTrain(x, y, maxiter),

which takes features x, labels y, and the maximum number of iterations maxiter as input and returns
a weight vector w. Assume that there are n points with d features and x is a matrix of size d x n, i.e.,
each column of x corresponds to a point. y is a matrix size 1 x n, each with value € {+1, —1}.

o [2 points] Similarly, implement a function
ypred = perceptronPredict (w, x)
that returns the predicted labels.

On the toy dataset learn a weight vector by setting maxiter=10. If implemented correctly your code
should return a weight vector that achieves zero training error and a small test error. To get full credit for
this part include the following in your submission.

e Include printouts for the code for the perceptronTrain.mand perceptronPredict.m

e Visualization of predictions on the test data. Use the function plotData (x, y, ypred) to plotthe
points. It shows the misclassified points (y # ypred) as circles.

e The learned weight vector (visualized as a line passing through the origin) on the same figure (you
can do this by using hold on; and then plotting using the plotLine (w) function provided in the
code). Make sure that the learned classifier agrees with the predictions.

2.b Effect of margin on convergence rate

The number of updates (or mistakes) the perceptron training algorithm makes is bounded by ?—22 where 0 is
the margin of the dataset and R is the maximum norm of . We will empirically verify this relationship on
the toy dataset.

[3 points] Modify the perceptronTrain function to additionally return the number of updates made
during training. Keeping opts.noise=0, vary opts.margin € 10/insPace(=5.0.20) (Jook up linspace on
Matlab by typing: help linspace).

For each value of the margin, sample 10 datasets and plot the logarithm of the average number of updates
as function of the logarithm of the margin (). In addition plot the upper bound log(#updates) = log(R?) —
log(62) as function of log(§) on the same figure. For the toy dataset R = /2. Verify that the number of
updates is always below the upper bound. Note that you might have to set the maxiter high enough so
that the algorithm converges before it is reached.

http://www-edlab.cs.umass.edu/~smaji/cmpsci689/proj/p1_code.tar.gz
http://www-edlab.cs.umass.edu/~smaji/cmpsci689/proj/p1_code.tar.gz

2.c Implement the averaged perceptron algorithm

[10 points] Implement the averaged perceptron algorithm discussed in class. To get full credit implement
the efficient version which maintains a running average instead of storing individual weight vectors and
counts.

w = averagedPerceptronTrain(x, y, maxiter),

Note that you can use the preceptronPredict (w, x) for prediction since the output format is identical.
Include the printout of the code in the submission, a figure showing the learned weights and predictions
on the test data.

2.d Effect of noise on generalization

Noise in the training data may lead to overfitting. Here we will test generalization properties of the per-
ceptron and averaged perceptron as a function of the magnitude of noise in the training data.

[3 points] Keeping opts.margin=0.1, vary opts.noise € linspace(0, 1,10). For each value of noise
generate 10 datasets and plot the average test error of the perceptron and averaged perceptron (both of
these should be run for maxiter=10). How does noise effect the test error for both the algorithms?

Note that when noise is large the dataset may not be separable and the perceptron training is not going
to converge.

2.e Handwritten digit classification

You will learn to classify the hand written digits "3” from ”8”. Below is a sample of the training set:

333333333133 3333%33337335333333

3333333383333333%533322 33
2 5238838832883y e 8§ &
ERPIFrLELELEELEERICS LS S g 9

3
>
F
i

33 733
5€ 888
g 8 8 & 3

The starter code for this part is in digits.m. It load the digits.mat file, which is a binary classifica-
tion task separating handwritten images of “3” from ”“8”. This data is a subset of the MNIST dataset. The
format of the data is identical to the toy dataset. Here “3” has label = +1 and 8" has label = -1.

Each point is 784 dimensional, which is obtained by concatenating the pixel values € [0 1] of each digit
which is a 28 x 28 image. It is hard to visualize the data because it lives in 784 dimensions but you can use
function montageDigits (data.train.x) to visualize the tiny images in the training set.

1. [3 points] Plot the test error as a function of the number of training iterations (i.e., maxiter=1,2, ...,
10), for the perceptron and averaged perception algorithm.

2. [1.5points] Visualize the learned weights for the averaged perceptron using visualizeWeights (w)
function provided in the code. The code creates an image out of the positive and negative parts of the
weights where the intensity is proportional to the magnitude. What parts of the weight vector have
high positive weight? What parts have high negative weights? What parts have nearly zero weights?
Ilustrate with figures.

