Modeling images
Subhransu Maiji

CMPSCI 670: Computer Vision
December 6, 2016



Administrivia

¢ This is the last lecture! Next two will be project presentations by you
» Upload your presentations on Moodle by 11 AM, Thursday, Dec. 8
» 6 mMin presentation + 2 mins of questions
» The order of presentations will be chosen randomly

¢ Remaning grading
» Homework 3 will be posted later today

» Homework 4 (soon)

¢ Questions?
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Modeling images

¢ Learn a probability distribution over natural images
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Image credit: Flickr @Kenny (zoompict) Teo

+ Many applications:
» image synthesis: sample x from P(x)
» image denoising: find most-likely clean image given a noisy image
» image deblurring: find most-likely crisp image given a blurry image
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Modeling images: challenges

964x64 _, 1400

atoms in the known universe: 10%Y

¢ Assumption
» Each pixel is generated independently

P(x11,X12,---,Xe4,64) = P(x1.1)P(x12) ... P(X64,64)

» Is this a good assumption?
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Texture synthesis

+ Goal: create new samples of a given texture

¢ Many applications: virtual environments, hole-filling,
texturing surfaces
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The challenge

+ Need to model the whole spectrum: from repeated to stochastic
texture

e
T
B e et

repeated stochastic

Alexei A. Efros and Thomas K. Leung, “Texture Synthesis by Non-parametric
Sampling,” Proc. International Conference on Computer Vision (ICCV), 19909.
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Markov chains

Markov chain

» A sequence of random variables X1, Xo, . .

» X¢ is the state of the model at time t

e Markov assumption: each state is dependent only on the previous one
- dependency given by a conditional probability:

e The above is actually a first-order Markov chain

X1

X2

— | X3

p(X¢|X¢—1)

e An N’th-order Markov chain:
p(Xt|xXt—1, - .
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Markov chain example: Text

“A dog is a man’s best friend. It's a dog eat dog world out
there.”
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Text synthesis

Create plausible looking poetry, love letters, term papers, etc.

Most basic algorithm

1. Build probability histogram
= find all blocks of N consecutive words/letters in training documents

= compute probability of occurrence p(Xt|Xt_1, c e 7Xt—(n—1))
2. Givenwords X1,X2,...,XL_1
= compute XL by sampling from p(Xt|Xt_1, ce >Xt—(n—1))

WE NEED TO EAT CAKE
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Text synthesis

“As I've commented before, really relating to
someone involves standing next to impossible.”

“One morning | shot an elephant in my arms and
Kissed him.”

“| spent an interesting evening recently with a grain
of salt”

Dewdney, “A potpourri of programmed prose and prosody” Scientific American, 1989.

CMPSCI 670 Subhransu Maji (UMASS) Slide from Alyosha Efros, ICCV 1999 1



Synthesizing computer vision text

What do we get if we extract
the probabilities from a chapter
on Linear Filters, and then
synthesize new statements?

Computer
Vision
A MODERN APPROACH

FORSYTH PONCE

Check out Yisong Yue’s website implementing text generation: build your own text Markov
Chain for a given text corpus. http://www.yisongyue.com/shaney/index.php
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Synthesized text

+ This means we cannot obtain a separate copy of the best
studied regions in the sum.

¢ All this activity will result in the primate visual system.
¢ The response is also Gaussian, and hence isn’t bandlimited.

¢ Instead, we need to know only its response to any data
vector, we need to apply a low pass filter that strongly
reduces the content of the Fourier transform of a very large
standard deviation.

¢ It is clear how this integral exist (it is sufficient for all pixels
within a 2k +1 x 2k +1 x 2k +1 x 2k + 1 — required for the
iImages separately.

Kristen Grauman



Markov random field

A Markov random field (MRF)

« generalization of Markov chains to two or more dimensions.

First-order MRF:

« probability that pixel X takes a certain value given the values of
neighbors A, B, C, and D:

P(X|A,B,C,D) blx |5
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Texture synthesis

Can apply 2D version of text synthesis

Texture corpus
(sample)

Output

Efros & Leung, ICCV 99




Texture synthesis: intuition

+ Before, we inserted the next word based on existing nearby
words...

+ Now we want to insert pixel intensities based on existing nearby
pixel values.

X

Place we want to
insert next

S3mple of the TEXTUTE
(“corpus™)

Distribution of a value of a pixel is conditioned on its neighbors alone.

CMPSCI 670 Subhransu Maji (UMASS) 15



Synthesizing one pixel

input image

synthesized image

» What is P(x|neighborhood of pixels around x) 7
» Find all the windows in the image that match the neighborhood
» To synthesize x

= pick one matching window at random
= assign x to be the center pixel of that window

» An exact neighbourhood match might not be present, so find the best
matches using SSD error and randomly choose between them,
preferring better matches with higher probability
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Neighborhood window

CMPSCI 670 Subhransu Maji (UMASS) Slide from Alyosha Efros, ICCV 1999 17



Varying window size
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Growing texture

« Starting from the initial image, “grow” the texture one pixel at a time
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ynthesis results

french canvas rafia weave




brick wall

white bread

Slide from Alyosha Efros, ICCV 1999

Synthesis results
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Synthesis results
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Failure cases

im copying

Verbat

Growing grbage

Slide from Alyosha Efros, ICCV 1999



Extrapolation
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(Manual) texture synthesis in the media
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Image denoising

+ Given a noisy image the goal is to infer the clean image

NOISy clean

+ Can you describe a technique to do this?
» Hint: we discussed this in an earlier class.

CMPSCI 670 Subhransu Maji (UMASS)
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Bayesian image denoising

+ Given a noisy image y, we want to estimate the most-likely clean
Image X :

arg max P(x|y) = argmax P(x)P(y|x)

= arg max|log P(x)|+[log P(y|x)
I

prior  how well does x explain
the observations y

» Observation term: P(y|x)
= Assume noise is i.i.d. Gaussian

yi = X; +¢€,e~ N(0;0°)

Plvb) x exp (1230

202

Thus, x* = arg max log P(x) — \|ly — x|/
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Images as collection of patches

¢ Expected Patch Log-Likelihood (EPLL) [Zoran and Weiss, 2011]
log P(x) ~ Epepaten(x) log P(p)
» EPLL: log-likelihood of a randomly drawn patch p from an image x

» Intuitively, if all patches in an image have high log-likelihood, then
the entire image also has high log-likelihood

» Advantage: modeling patch likelihood P(p) is easier

+ EPLL objective for image denoising

x" = argmaxlog Epcpatcnx)P(P) — Ally — x||?
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Example [Zoran and Weiss, 2011]

1

(a) Training Image

(c) Noisy Image
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Optimization requires reasoning
about which “token” is present at
each patch and how well does
that token explain the noisy
image.

Gets tricky as patches overlap.
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Example [Zoran and Weiss, 2011]
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Figure 6: Eigenvectors of 6 randomly selected covariance matrices
from the learned GMM model, sorted by eigenvalue from largest
to smallest. Note the richness of the structures - some of the
eigenvectors look like PCA components, while others model texture
boundaries, edges and other structures at different orientations.

: Use Gaussian

' mixture models

(GMMs) to model
patch likelihoods.

Extract 8x8 patches
from many images
. and learn a GMM.
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Image deblurring

+ Given a noisy image the goal is to infer the clean image

blurred

+ Can you describe a technique to do this?
» Hint: we discussed this in an earlier class.
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Bayesian image deblurring

+ Given a blurred image y, we want to estimate the most-likely crisp
Image X :

arg max P(x|y) = argmax P(x)P(y|x)

= arg max|log P(x)|+[log P(y|x)
I

prior  how well does x explain
the observations y

» Observation term: P(y|x)
= Assume noise is i.i.d. Gaussian and blur kernel K is known

y:K*X—I—G,EiNN(O,O'2)

P(y[x) o< exp (—

ly — K x x||? linear constraints
202

Thus, x* = argmaxlog P(x) — \||y — K * XH2
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Summary

+ Modeling large images is hard but modeling small images (8x8
patches) is easier.

» Can take us quite far with many low-level vision tasks such as
texture synthesis, denoising, deblurring, etc.

» But fails to capture long-range interactions

Variational Framework for Non-Local Inpainting, Vadim Fedorov, Gabriele Facciolo, Pablo Arias

+ Modeling images is an open area of research. Some directions:
» Multi-scale representations
» Generative image modeling using CNNs (variational auto encoders,
generative adversarial networks, etc)
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