Texture and materials

Subhransu Maji

CMPSCI 670: Computer Vision

December 1, 2016

What does texture tell us?

• Indicator of materials properties, e.g. brick vs wooden

◆ Complementary to shape

correlated with identity but not the same

CMPSCI 670 Subhransu Maji (UMASS)

Lecture outline

- Texture perception
 - Texture attributes
 - Describing textures from images
- ◆ Texture representation
 - ▶ Filter-banks and bag-of-words
- ▶ CNN filter-banks for texture

CMPSCI 670

Subhransu Maji (UMASS)

Pre-attentive texture segmentation

◆ Phenomena in which two regions of texture *quickly* (i.e., in less than 250 ms) and *effortlessly* segregate

Led to early models of texture representation "textons"

CMPSCI 670 Subhran

Subhransu Maji (UMASS)

Béla Julesz, Nature, 1981 5

High-level attributes of texture

- Early works include:
 - Orientation, contrast, size, spacing, location

[Bajscy 1973]

Coarseness, contrast, directionality, line-like, regularity, roughness

[Tamura et al., 1978]

- Coarseness, contrast, busyness, complexity and texture strength
 [Amadusen and King, 1989]
- These attributes can be measured reasonably well from images using lowlevel statistics of pixel intensities

Brodatz dataset

_

CMPSCI 670

Subhransu Maji (UMASS)

Towards a texture lexicon

◆ The texture lexicon: understanding the categorization of visual texture terms and their relationship to texture images. Bhusan, Rao, Lohse, Cognitive Science, 1997

http://csjarchive.cogsci.rpi.edu/1997v21/i02/p0219p0246/MAIN.PDF

CMPSCI 670 Subhransu Maji (UMASS)

◆ From human perception to computer vision ◆ 47 attributes (after accounting for synonyms, etc)

Talk outline

- ◆ Texture perception
- Texture attributes
- Describing textures in the wild [CVPR 14]
- Texture representation
- Filter-banks and bag-of-words
- CNN filter-banks for texture [CVPR 15, IJCV 16]

CMPSCI 670 Subhransu Maji (UMASS)

"Bag of words" for texture • Absolute positions of local patterns don't matter as much ◆ Bag of words approach:

- ▶ Inspired by text representation, i.e., document ~ word counts
- In vision we don't have a pre-defined dictionary
 - Learn words by clustering local responses (Vector quantization)
- Computational basis of "textons" [Julesz, 1981]

Learning attributes on DTD

	Kernel			
Local descr.	Linear	Hellinger	add- χ^2	\exp - χ^2
MR8	15.9±0.8	19.7 ± 0.8	24.1 ± 0.7	30.7 ± 0.7
LM	18.8 ± 0.5	25.8 ± 0.8	31.6 ± 1.1	39.7 ± 1.1
Patch _{3×3}	14.6 ± 0.6	22.3 ± 0.7	26.0 ± 0.8	30.7 ± 0.9
Patch _{7×7}	18.0 ± 0.4	26.8 ± 0.7	31.6 ± 0.8	37.1 ± 1.0
LBP^u	8.2 ± 0.4	9.4 ± 0.4	14.2 ± 0.6	24.8 ± 1.0
LBP-VQ	21.1 ± 0.8	23.1 ± 1.0	28.5 ± 1.0	34.7 ± 1.3
SIFT	34.7 ± 0.8	$\textbf{45.5} \pm \textbf{0.9}$	$\textbf{49.7} \pm \textbf{0.8}$	$\textbf{53.8} \pm \textbf{0.8}$

Bag of words (~1k words) representations on DTD dataset

SIFT works quite well David Lowe, ICCV 99

Dealing with quantization error

- ◆ Bag of words is only **counting** the number of local descriptors assigned to each word (Voronoi cell)
- Why not include other statistics? For instance:
 - Mean of local descriptors x

CMPSCI 670

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf Subhransu Maji (UMASS)

Describable attributes as features

- ◆ Train classifiers to predict 47 attributes
- SIFT + AlexNet features to make predictions
- On a new dataset, learn classifiers on 47 features

Features	KTH-2b	FMD	
DTD	73.8%	61.1%	47 dim
Prev best	57.1%	66.3%	
DTD + SIFT + DeCAF	77.1%	67.1%	66K dim

◆ DTD attributes correlate well with material properties

CMPSCI 670 Subhransu Maji (UMASS) 20

The quest for better features ...

- Early filter banks were based on simple linear filters is there something better? Can we learn them from data?
- Slow progress for a while and performance plateaued on a number of benchmarks, e.g. PASCAL VOC

CNNs as feature extractors

- Take the outputs of various layers
- conv5. fc6. fc7
- ◆ State of the art on many datasets (Donahue et al, ICML 14)
- Regions with CNN features (Girshick et al., CVPR 14) achieves 41%⇒53.7% on PASCAL VOC 2007 detection challenge. Current best results 66%!
- ◆ A flurry of activity in computer vision; benchmarks are being shattered every few months! Great time for vision applications

CNNs for texture

Dataset	FV (SIFT)	AlexNet
CUReT	99.5	97.9
UMD	99.2	96.4
UIUC	97.0	94.2
KT	99.7	96.9
KT-2a	82.2	78.9
KT-2b	69.3	70.7
FMD	58.2	60.7
DTD	61.2	54.8
mean	83.3	81.3

Texture recognition accuracy

- CNN features from the last layer don't seem to outperform SIFT on texture datasets
- Speculations on why?
 - Textures are different from categories on ImageNet which are mostly objects
 - Dense layers preserve spatial structure are not ideal for measuring orderless statistics

CMPSCI 670 Subhransu Maji (UMASS)

