Texture and materials

Subhransu Maji

CMPSCI 670: Computer Vision

December 1, 2016

What does texture tell us?

Indicator of materials properties, e.g. brick vs wooden

Complementary to shape

correlated with identity but not the same

Lecture outline

- Texture perception
 - Texture attributes
 - Describing textures from images
- Texture representation
 - Filter-banks and bag-of-words
 - CNN filter-banks for texture

Pre-attentive texture segmentation

 Phenomena in which two regions of texture *quickly* (i.e., in less than 250 ms) and *effortlessly* segregate

Led to early models of texture representation "textons"

Subhransu Maji (UMASS)

High-level attributes of texture

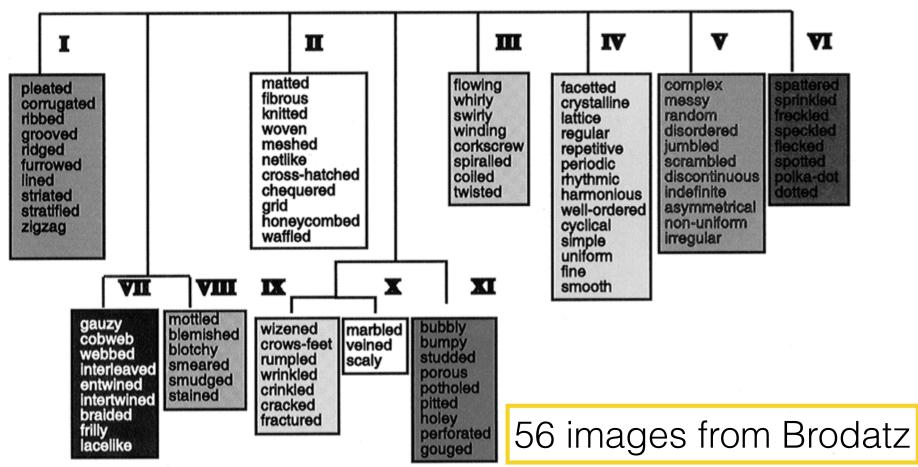
Early works include:

- Orientation, contrast, size, spacing, location
 [Bajscy 1973]
- Coarseness, contrast, directionality, line-like, regularity, roughness
 [Tamura et al., 1978]
- Coarseness, contrast, busyness, complexity and texture strength
 [Amadusen and King, 1989]
- These attributes can be measured reasonably well from images using lowlevel statistics of pixel intensities

Brodatz dataset

Towards a texture lexicon

 The texture lexicon: understanding the categorization of visual texture terms and their relationship to texture images, Bhusan, Rao, Lohse, Cognitive Science, 1997



http://csjarchive.cogsci.rpi.edu/1997v21/i02/p0219p0246/MAIN.PDF

Describable texture dataset

- From human perception to computer vision
- ◆47 attributes (after accounting for synonyms, etc)
- 120+ images per attribute (crowdsourced)

CMPSCI 670

https://people.cs.umass.edu/~smaji/papers/textures-cvpr14.pdf

Subhransu Maji (UMASS)

Human centric applications

Properties complementary to materials

Retrieving fabrics and wallpapers

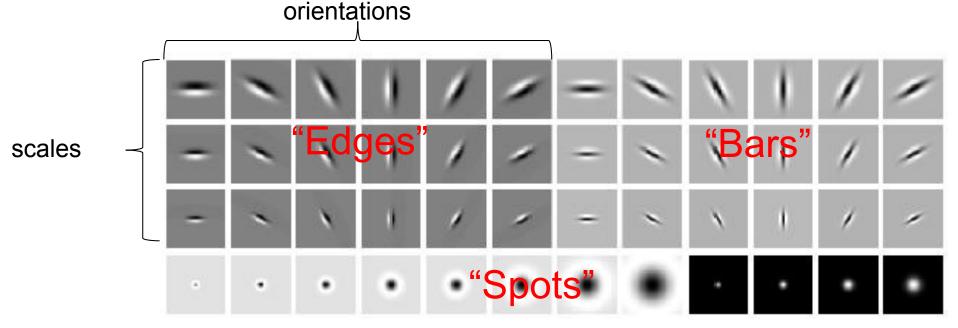
Automatic predictions using computer vision (more later...) CMPSCI 670
Subhransu Maji (UMASS)

Talk outline

- Texture perception
 - Texture attributes
 - Describing textures in the wild [CVPR 14]
- Texture representation
 - Filter-banks and bag-of-words
 - CNN filter-banks for texture [CVPR 15, IJCV 16]

Texture representation

- Textures are made up of repeated local patterns
 - Use filters that look like patterns spots, edges, bars



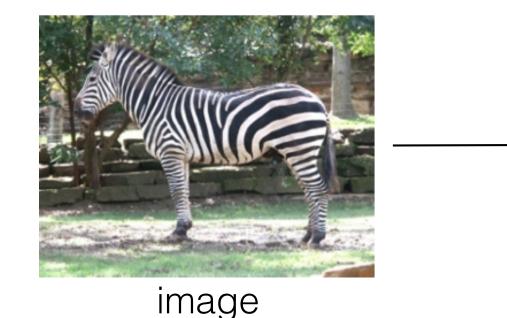
Leung & Malik filter bank, IJCV 2001

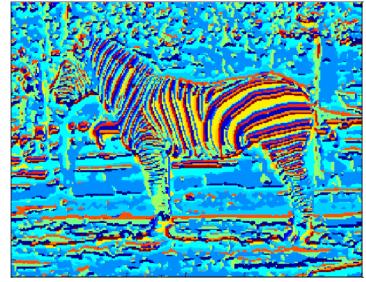
Describe their statistics within each image/region

Filter bank response

"Bag of words" for texture

- Absolute positions of local patterns don't matter as much
- Bag of words approach:
 - Inspired by text representation, i.e., document ~ word counts
 - In vision we don't have a pre-defined dictionary
 - Learn words by clustering local responses (Vector quantization)
 - Computational basis of "textons" [Julesz, 1981]





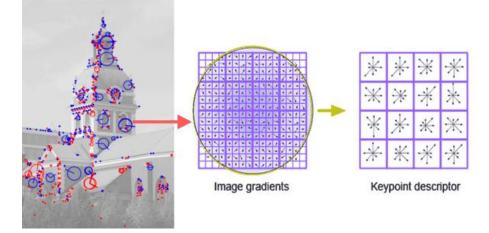
Learning attributes on DTD

	Kernel			
Local descr.	Linear	Hellinger	add- χ^2	$\exp-\chi^2$
MR8	15.9±0.8	19.7 ± 0.8	24.1 ± 0.7	30.7 ± 0.7
LM	18.8 ± 0.5	25.8 ± 0.8	31.6 ± 1.1	39.7 ± 1.1
Patch _{3×3}	14.6 ± 0.6	22.3 ± 0.7	26.0 ± 0.8	30.7 ± 0.9
$Patch_{7\times7}$	18.0 ± 0.4	26.8 ± 0.7	31.6 ± 0.8	37.1 ± 1.0
LBP^u	8.2 ± 0.4	9.4 ± 0.4	14.2 ± 0.6	24.8 ± 1.0
LBP-VQ	21.1 ± 0.8	23.1 ± 1.0	28.5 ± 1.0	34.7 ± 1.3
SIFT	$\textbf{34.7} \pm \textbf{0.8}$	$\textbf{45.5} \pm \textbf{0.9}$	$\textbf{49.7} \pm \textbf{0.8}$	$\textbf{53.8} \pm \textbf{0.8}$

Bag of words (~1k words) representations on DTD dataset

SIFT works quite well

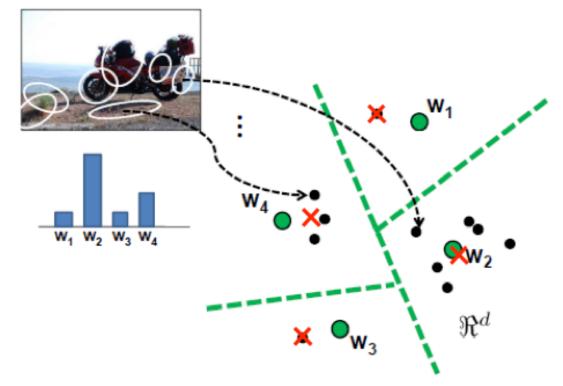
David Lowe, ICCV 99



http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O

Dealing with quantization error

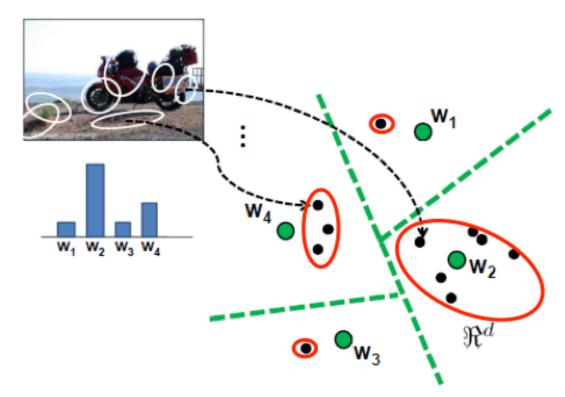
- Bag of words is only counting the number of local descriptors assigned to each word (Voronoi cell)
- Why not include other statistics? For instance:
 - Mean of local descriptors x



http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf CMPSCI 670 Subhransu Maji (UMASS)

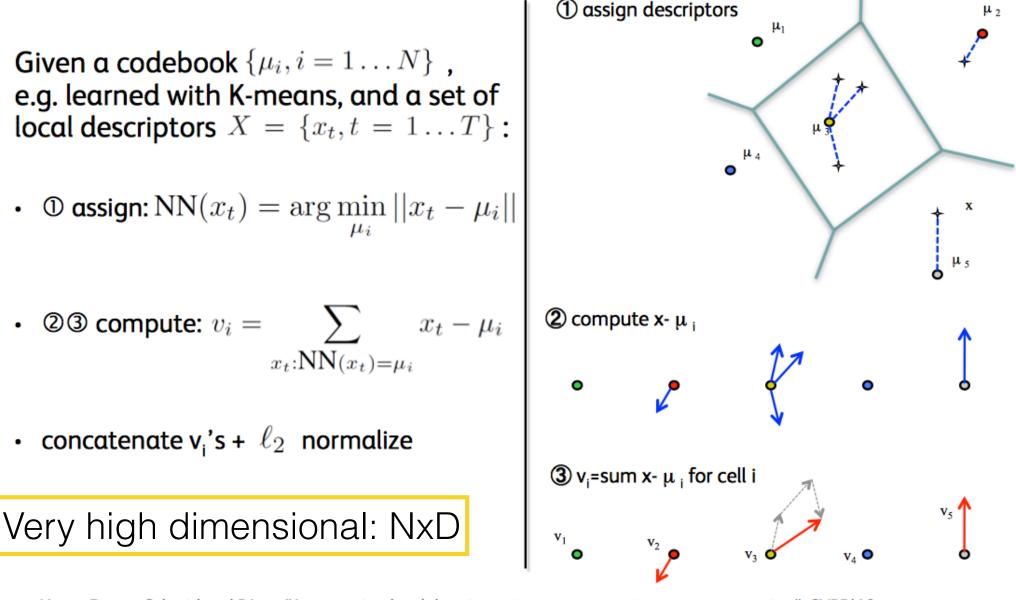
Dealing with quantization error

- Bag of words is only counting the number of local descriptors assigned to each word (Voronoi cell)
- Why not include other statistics? For instance:
 - Mean of local descriptors x
 - Covariance of local descriptors



http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf CMPSCI 670 Subhransu Maji (UMASS)

The VLAD descriptor

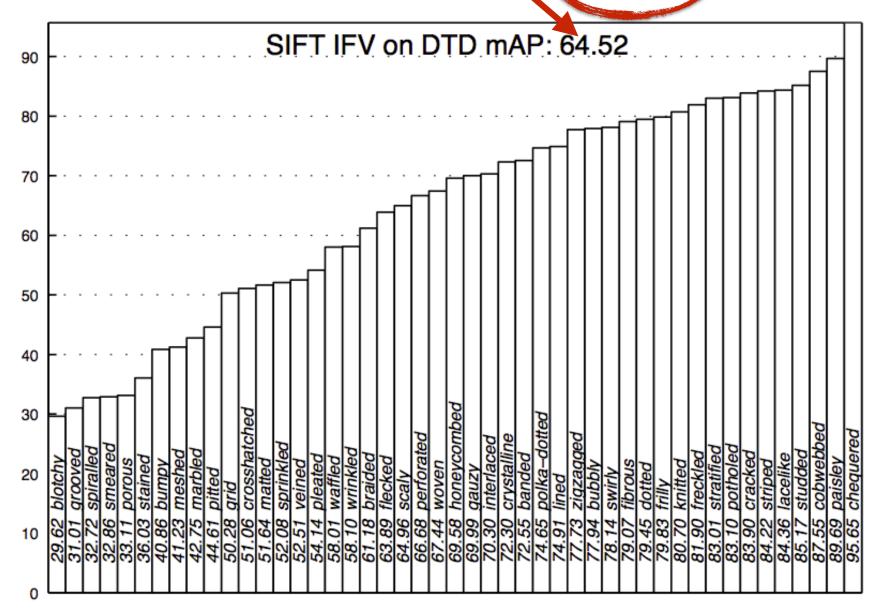


Jégou, Douze, Schmid and Pérez, "Aggregating local descriptors into a compact image representation", CVPR'10.

Fisher-vectors use both mean and covariance [Perronnin et al, ECCV 10]

Fisher-vectors with SIFT

SIFT BoVW + linear SVM: mAP = 37.4 +27%



CMPSCI 670

Describable attributes as features

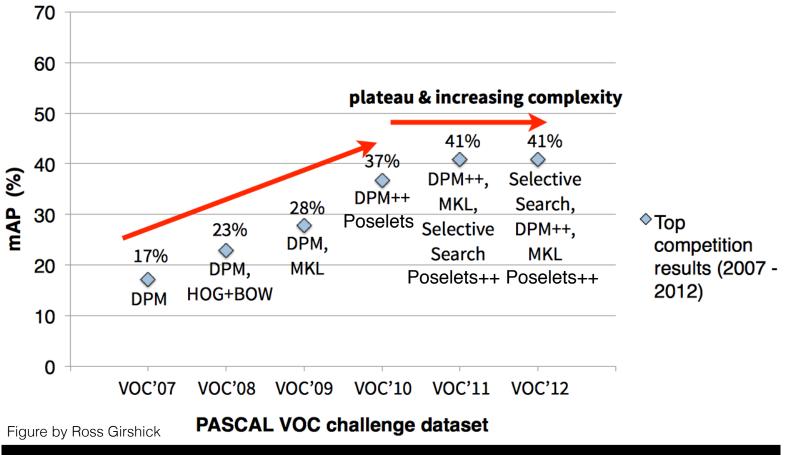
- Train classifiers to predict 47 attributes
 - SIFT + AlexNet features to make predictions
 - On a new dataset, learn classifiers on 47 features

Features	KTH-2b	FMD	
DTD	73.8%	61.1%	47 dim
Prev best	57.1%	66.3%	
DTD + SIFT + DeCAF	77.1%	67.1%	66K dim

• DTD attributes correlate well with material properties

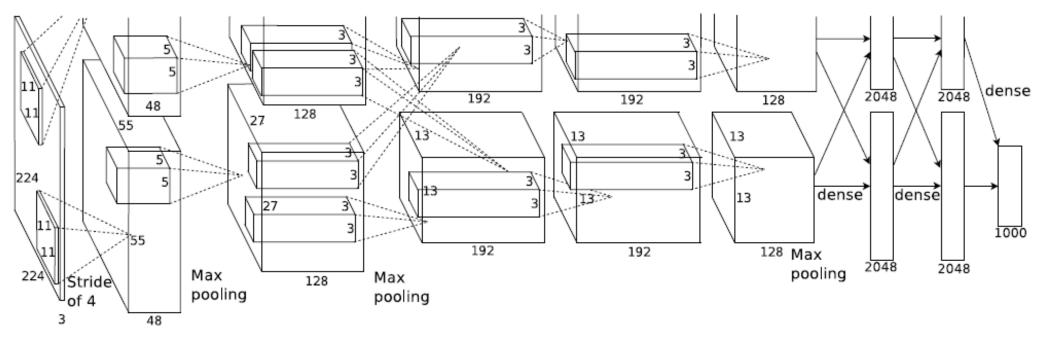
The quest for better features ...

- Early filter banks were based on simple linear filters is there something better? Can we learn them from data?
- Slow progress for a while and performance plateaued on a number of benchmarks, e.g. PASCAL VOC



[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

ImageNet classification breakthrough



"AlexNet" CNN

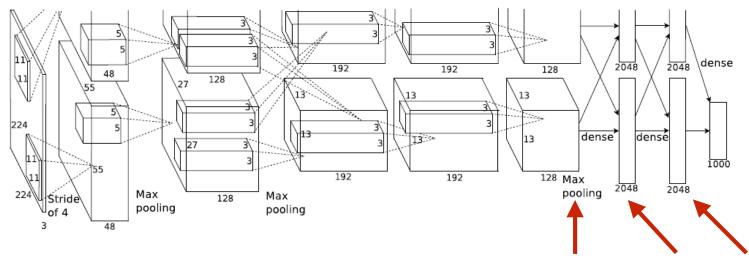
60 million parameters trained on 1.2 million images

Krizhevsky, Strutsvekar, Hinton, NIPS 2012

ILSVRC 2012 test	Top-5 error
Fisher Vectors (ISI)	26.2%
5 SuperVision CNNs	16.4%
7 SuperVision CNNs	15.3%

+1 for crowdsourcing

CNNs as feature extractors



Take the outputs of various layers

conv5, fc6, fc7

- State of the art on many datasets (Donahue et al, ICML 14)
- ◆ Regions with CNN features (Girshick et al., CVPR 14) achieves
 41% ⇒ 53.7% on PASCAL VOC 2007 detection challenge. Current best results 66%!
- A flurry of activity in computer vision; benchmarks are being shattered every few months! Great time for vision applications

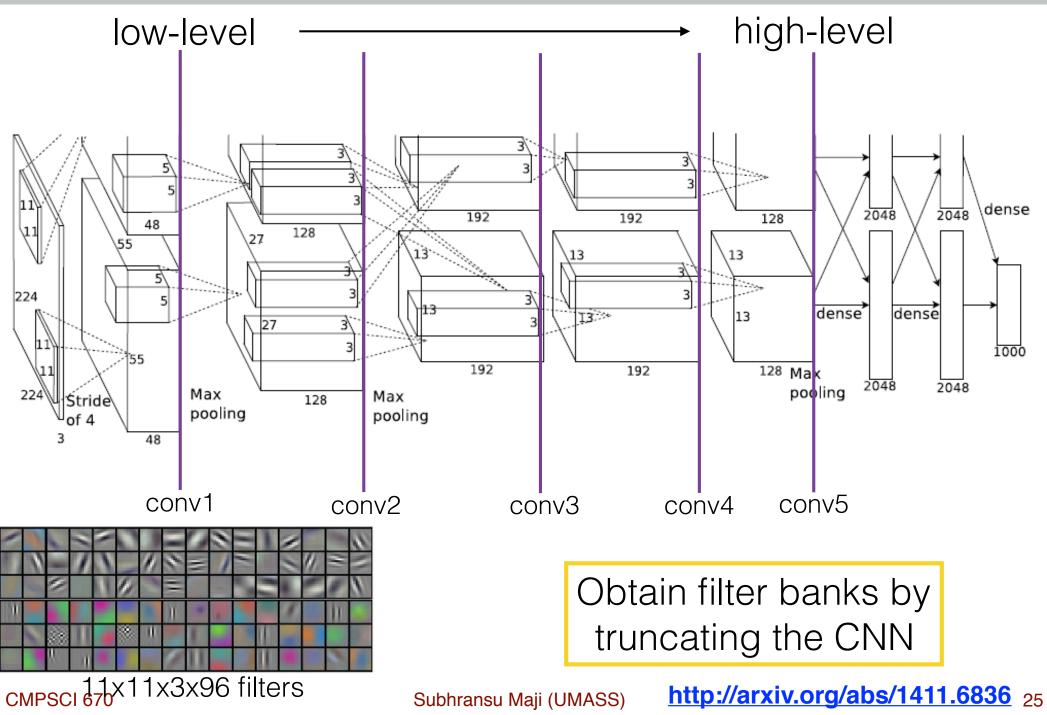
Dataset	FV (SIFT)	AlexNet
CUReT	99.5	97.9
UMD	99.2	96.4
UIUC	97.0	94.2
KT	99.7	96.9
KT-2a	82.2	78.9
KT-2b	69.3	70.7
FMD	58.2	60.7
DTD	61.2	54.8
mean	83.3	81.3

Texture recognition accuracy

Flickr material dataset (10 categories)				
Paper	Wood	Foliage	Fabric	
http://people.csail.mit.edu/celiu/CVPR2010/FMD/				

- CNN features from the last layer don't seem to outperform SIFT on texture datasets
- Speculations on why?
 - Textures are different from categories on ImageNet which are mostly objects
 - Dense layers preserve spatial structure are not ideal for measuring orderless statistics

CNN layers are non-linear filter banks



Texture recognition accuracy

Dataset	FV (SIFT)	AlexNet
KT-2b	69.3	70.7
FMD	58.2	60.7
DTD	61.2	54.8

KT-2b dataset (11 material categories)

Texture recognition accuracy

Dataset	FV (SIFT)	AlexNet (FC)	FV (conv5)
KT-2b	69.3	70.7	71.0
FMD	58.2	60.7	72.6
DTD	61.2	54.8	66.7

Significant improvements over simply using CNN features

Aluminium foil Wool Image: Corduroy Corduroy White bread Image: Corduroy Corton Image: Corduroy Corton Image: Corduroy Corton Image: Corduroy Image: Corduroy</td

Texture recognition accuracy

Dataset	FV (SIFT)	AlexNet (FC)	FV (conv5)	FV (conv13)
KT-2b	69.3	70.7	71.0	72.2
FMD	58.2	60.7	72.6	80.8
DTD	61.2	54.8	66.7	80.5

Using the model from Oxford VGG group that performed the best on LSVRC 2014 (ImageNet classification challenge)

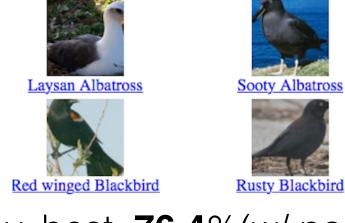
http://www.robots.ox.ac.uk/~vgg/research/very_deep/

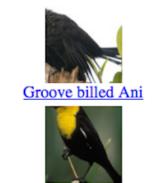
Scenes and objects as textures

MIT Indoor dataset (67 classes)

D-CNN 81.7% Prev. best: **70.8**% Zhou et al., NIPS 14

CUB 200 dataset (bird sub-category recognition)





Yellow headed Blackbird

Bobolink

Prev. best: **76.4**%(w/ parts) FV-CNN **72.1**% (w/o parts)

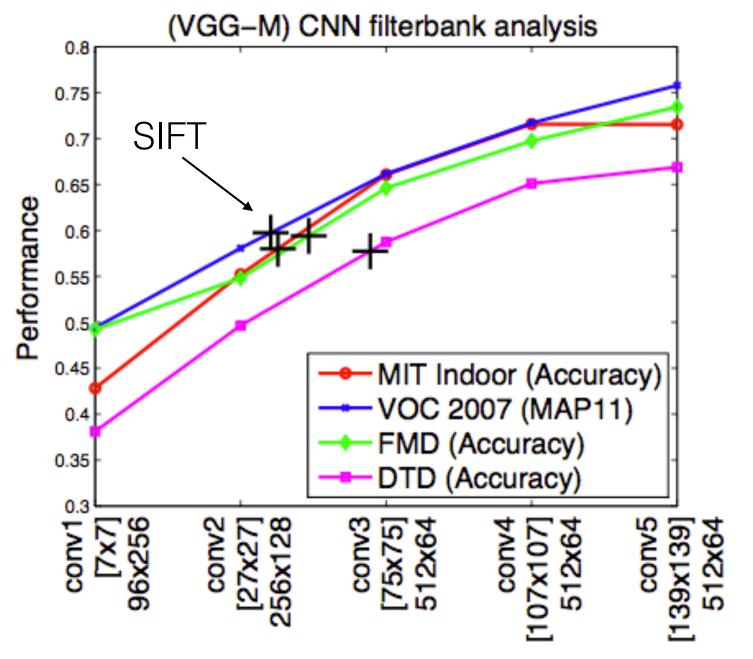
CMPSCI 670

. . .

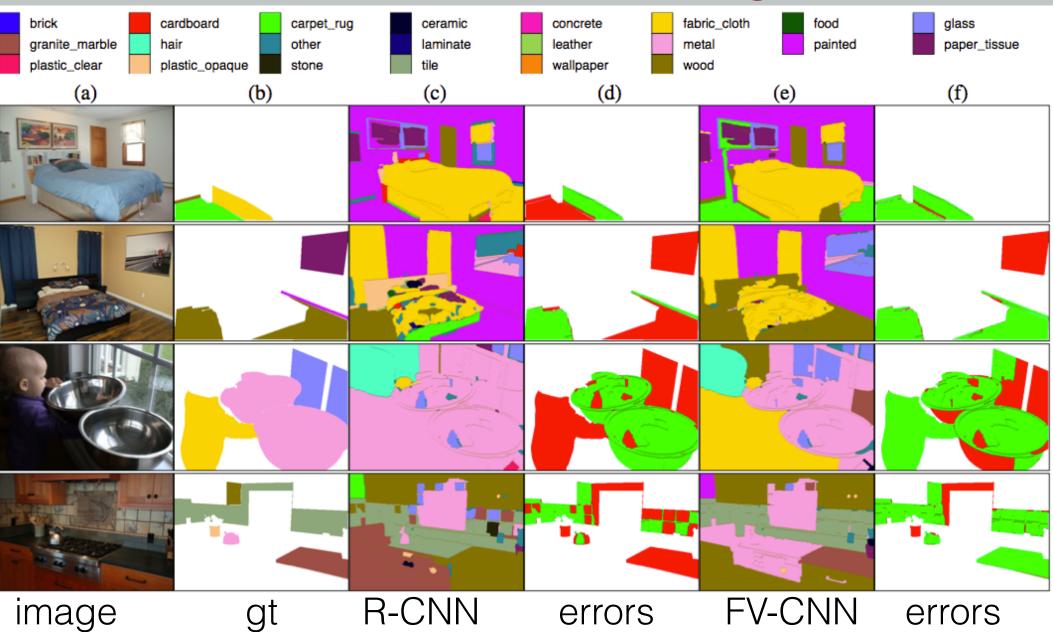
Zhang et al., ECCV 14 Subhransu Maji (UMASS)

http://arxiv.org/abs/1411.6836 29

SIFT vs. CNN filter banks



OpenSurfaces material segmentation



CMPSCI 670

Subhransu Maji (UMASS)

http://arxiv.org/abs/1411.6836 31

MSRC segmentation dataset

