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Grouping and segmentation
‣ Goals of segmentation 
‣ Clustering using k-means 
‣ Choice of representation 
‣ Two techniques: 

➡ Mean shift algorithm 
➡ Graph cuts algorithm 

‣ Interactive segmentation

Overview
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Take 4 photos — stitch them together + post-processing (remove 
glare, crop along the boundary, remove skew)

Photoscan by Google
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https://www.engadget.com/2016/11/15/google-photos-photoscan-app-editing-tools/
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Separate image into coherent “objects”

Another way of thinking about boundary detection

The goals of segmentation
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image human segmentation

Source: Lana Lazebnik
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Segmentation as clustering
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Depending on what we choose as the feature space, we 
can group pixels in different ways.

Grouping pixels based 
on intensity similarity 

Feature space: intensity value (1-d) 
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K=2

K=3

quantization of the feature space; 
segmentation label map

clustering using kmeans
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Segmentation as clustering
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R=15 
G=189 
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G=12 
B=2R

G

B

Grouping pixels based 
on color similarity 

Feature space: color value (3-d) 
Kristen Grauman

Depending on what we choose as the feature space, we 
can group pixels in different ways.
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Segmentation as clustering
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Depending on what we choose as the feature space, we 
can group pixels in different ways.

Grouping pixels based 
on intensity similarity 

Clusters based on intensity 
similarity don’t have to be spatially 
coherent.

Kristen Grauman
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Depending on what we choose as the feature space, we can 
group pixels in different ways.

Segmentation as clustering
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X

Grouping pixels based on 
intensity+position similarity 

Y

Intensity

Both regions are black, but if we also 
include position (x,y), then we could 
group the two into distinct segments; 
way to encode both similarity & 
proximity.
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Color, brightness, position alone are not enough to distinguish all 
regions…

Segmentation as clustering
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Depending on what we choose as the feature space, we can 
group pixels in different ways.

Segmentation as clustering
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F24

Grouping pixels based on 
filter response (texture) 
similarity 

F2

Feature space: filter bank responses (e.g., 24-d) 

F1

…

Filter bank of 
24 filters
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Image segmentation example
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Kristen Grauman
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Pros
Simple, fast to compute
Converges to local minimum of 
within-cluster squared error

Cons/issues
Setting k?
Sensitive to initial centers
Sensitive to outliers
Detects spherical clusters
Assuming means can be 
computed

K-means: pros and cons
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The mean shift algorithm seeks modes or local maxima of density in 
the feature space

Mean shift algorithm
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image
Feature space  

(L*u*v* color values)
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Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift

16Slide by Y. Ukrainitz & B. Sarel



Subhransu Maji (UMASS)CMPSCI 670

Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Search  
window

Center of 
mass

Mean Shift 
vector

Mean shift
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Search  
window

Center of 
mass

Mean shift
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Mean	Shift	procedure:	
For	each	point,	repeat	till	convergence:	
•	Compute	mean	shift	vector	
•	Translate	the	Kernel	window	by	m(x)
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Computing the Mean Shift
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Cluster: all data points in the attraction basin of a mode
Attraction basin: the region for which all trajectories lead to the same 
mode

Mean shift clustering
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Slide by Y. Ukrainitz & B. Sarel

Subhransu Maji (UMASS)CMPSCI 670

Find features (color, gradients, texture, etc)
Initialize windows at individual feature points
Perform mean shift for each window until convergence
Merge windows that end up near the same “peak” or mode

Mean shift clustering/segmentation

24



Subhransu Maji (UMASS)CMPSCI 670
http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift segmentation results
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Mean shift clustering results
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q

Image graph
• node (vertex) for every pixel 
• link between pair of pixels, p,q 
• affinity weight wpq for each link (edge) 

• wpq measures similarity 
• similarity is inversely proportional to 

difference (in color and position…) 
• In practice only connect nodes within a 

neighborhood of each pixel

Images as graphs
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p

w

Source: Steve Seitz

wpq
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Break graph into segments
• Want to delete links that cross 

between segments 
• Easiest to break links that have low 

similarity (low weight) 
– similar pixels should be in the same 

segments 
– dissimilar pixels should be in different 

segments

Segmentation by graph cuts
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w

Source: Steve Seitz
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Link Cut 
• set of links whose removal makes a graph disconnected 
• cost of a cut:

Cuts in a graph: Min cut
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A B

Find minimum cut 
• gives you a segmentation 
• fast algorithms exist for doing this (max flow/min cut algorithms) 
• faster implementations exist that exploit the grid-structure of the 

graph (e.g., Boykov and Jolly 2001)

Source: Steve Seitz
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Problem with minimum cut:  
Weight of cut proportional to number of edges in the cut; 
tends to produce small, isolated components.

Minimum cut
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[Shi & Malik, 2000 PAMI]
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Cuts in a graph: Normalized cut
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A B

Normalized Cut 
• fix bias of Min Cut by normalizing for size of segments: 

 assoc(A,V) = sum of weights of all edges that touch A 

• ncut value is small when we get two clusters with many edges 
with high weights, and few edges of low weight between them 

• NP-hard to compute, but approximate solution for minimizing the 
ncut value: generalized eigenvalue problem

Source: Steve Seitz
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J. Shi and J. Malik, Normalized Cuts and Image Segmentation, CVPR, 1997  
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Example results

32
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Pros:
Generic framework, flexible to choice of function that 
computes weights (“affinities”) between nodes
Does not require model of the data distribution

Cons:
Time complexity can be high
‣ Dense, highly connected graphs à many affinity computations 
‣ Solving eigenvalue problem 
Preference for balanced partitions

Normalized cuts: pros and cons
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Often we want to incorporate prior information
‣ User input in interactive applications 
‣ Shape priors, e.g., we want a round object

Image segmentation with priors
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Constrains the set of possible segmentations
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Image segmentation with priors
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“Grabcut”

C. Rother, V. Kolmogorov, A. Blake. GrabCut: Interactive Foreground Extraction 
using Iterated Graph Cuts. ACM Transactions on Graphics (SIGGRAPH'04), 2004
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Construct a color model of foreground and background

“Grabcut" algorithm
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foreground background
Gaussian mixture model (5-8 components) 

(probabilistic version of k-means)

costs

min-cut
iterate

user input
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Solution using min-cut
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Source	(Label	0)

Sink	(Label	1)

Cost	to	assign	to	0

Cost	to	assign	to	1

background similarity

foreground similarity

pairwise similarity
Cost	of	splitting	nodes
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Moderately straightforward examples
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… GrabCut completes automatically
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Difficult examples
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Harder CaseFine structure

Initial 
Rectangle

Initial  
Result

Camouflage & 
Low Contrast
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Pros
‣ Globally optimal solution using min-cut/max-flow algorithms 
‣ Fast algorithms exist for grid-graphs 
‣ Works well in many cases 
Cons
‣ Color similarity does not work when contrast is low, or when the 

image has fine-structures

Grabcut algorithm
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Chapter 5, Richard Szeliski’s book
Berkeley segmentation database and benchmark
‣ Also read about the Berkeley boundary detector 
http://www.cis.upenn.edu/~jshi/GraphTutorial/
Image segmentation via. graph cuts
‣ Boykov and Jolly, Interactive graph cuts for optimal boundary & 

region segmentation of objects in ND images, ICCV 2001 

Normalized cuts for image segmentation (Shi and Malik)
‣ http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf 

Biased normalized cuts
‣ http://people.cs.umass.edu/~smaji/projects/biasedNcuts/

index.html

Further thoughts and readings ..
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