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One of the main weakness of linear models is that they are linear
Decision trees can model non-linear boundaries
Neural networks are yet another non-linear classifier
Take the biological inspiration further by chaining together perceptrons
Allows us to use what we learned about linear models:
‣ Loss functions, regularization, optimization

Motivation
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Traditional recognition approach
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• Features are not learned 
• Trainable classifier is often generic (e.g. SVM)
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Features are key to recent progress in recognition
Multitude of hand-designed features currently in use
‣ SIFT, HOG, …………. 
Where next? Better classifiers? Or keep building more 
features?

Traditional recognition approach
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Felzenszwalb,  Girshick,  
McAllester and Ramanan, PAMI 2007

Yan & Huang  
(Winner of PASCAL 2010 classification competition)
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‣ Learn a feature hierarchy all the way from pixels to classifier 
‣ Each layer extracts features from the output of previous 

layer 
‣ Train all layers jointly

What about learning the features?

5

Layer 1 Layer 2 Layer 3 Simple  
Classifier

Image/ 
Video 
Pixels

Subhransu Maji (UMASS)CMPSCI 670

“Shallow” vs. “deep” architectures
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Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…
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Two-layer network architecture
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Non-linearity is important
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We saw that a perceptron cannot learn the XOR function
Exercise: come up with the parameters of a two layer network with 
two hidden units that computes the XOR function
‣ Here is a table with a bias feature for XOR

The XOR function
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Do we gain anything beyond two layers?
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Theorem [Kurt Hornik et al., 1989]: Let F be a continuous function 
on a bounded subset of D-dimensional space. Then there exists a 
two-layer network F with finite number of hidden units that 
approximates F ̂arbitrarily well. Namely, for all x in the domain of F,       
|F(x)-F(̂x)| < ε

Colloquially “a two-layer network can approximate any function”
‣ This is true for arbitrary link function 

Going from one to two layers dramatically improves the representation 
power of the network

Expressive power of a two-layer network
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D dimensional data with K hidden units has(D+2)K+1 parameters
‣ (D+1)K in the first layer (1 for the bias) and K+1 in the second layer 
With N training examples, set the number of hidden units K ~ N/D to 
keep the number of parameters comparable to size of training data
K is both a form of regularization and inductive bias
Training and test error vs. K

How many hidden units?
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Optimization framework:

Loss minimization: replace squared-loss with any other
Regularization:
‣ Add a regularization (e.g. l2-norm of the weights) 
‣ Other ideas: dropout, batch normalization, etc 

Optimization by gradient descent
‣ Highly non-convex problem so no guarantees about optimality

Training a two-layer network
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Optimization framework:

Computing gradients: second layer

Training a two-layer network
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Optimization framework:

Computing gradients: first layer
‣ Chain rule of derivatives

Training a two-layer network
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Easy to get gradients wrong!
‣ One strategy is to learn v by fixing W  (least-squares) and then 

learn W by fixing v and iterate between the two steps. 
Use online gradients (or stochastic gradients)

Learning rate: start with a high value and reduce it when the 
validation error stops decreasing 
Momentum: move out small local minima 
‣ Usually set to a high value: β = 0.9 

Practical issues: gradient descent
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Initialization didn’t matter for linear models
‣ Guaranteed convergence to global minima as long as step size is 

suitably chosen since the objective is convex 
Neural networks are sensitive to initialization
‣ Many local minima 
‣ Symmetries: reorder the hidden units and change the weights 

accordingly to get another network that produces identical outputs 
Train multiple networks with randomly initialized weights

Practical issues: initialization

16

pick the best
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The architecture generalizes to any directed acyclic graph (DAG)
‣ For example a multi-layer network 
‣ One can order the vertices in a DAG such that all edges go from 

left to right (topological sorting)

Beyond two layers
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gradients: backward propagation

prediction: forward propagation
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Why train deeper networks?
We will borrow ideas from theoretical computer science
‣ A boolean circuit is a DAG where each node is either an input, an 

AND gate, an OR gate, or a NOT gate. One of these is designated 
as an output gate. 

‣ Circuit complexity of a boolean function f is the size of the smallest 
circuit (i.e., with the fewest nodes) that can compute f. 

The parity function: the number of 1s is even or odd

[Håstad, 1987] A depth-k circuit requires                        to compute 
the parity function of n inputs

Breadth vs. depth
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Why not train deeper networks?
Selecting the architecture is daunting
‣ How many hidden layers 
‣ How many units per hidden layer 
Vanishing gradients
‣ Gradients shrink as one moves away from the output layer 
‣ Convergence is slow 
Training deep networks is an active area of research
‣ Layer-wise initialization (perhaps using unsupervised data) 
‣ Engineering: GPUs to train on massive labelled datasets

Breadth vs. depth
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Images are not just a collection of pixels
‣ Lots of local structure: edges, corners, etc 
‣ These statistics are translation invariant 
The convolution operation:

Convolutional neural networks

20

absolute value of the output of
convolution of the image and filter

image

filter: horizontal edge
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Images are not just a collection of pixels
‣ Lots of local structure: edges, corners, etc 
‣ These statistics are translation invariant 
The convolution operation:

Convolutional neural networks
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absolute value of the output of
convolution of the image and filter

image

filter: vertical edge
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Images are not just a collection of pixels
‣ Lots of local structure: edges, corners, etc 
‣ These statistics are translation invariant 
The pooling operation: subsample the output
‣ Invariance to small shifts 
‣ Options: max, sum        Parameters: window size, stride

Convolutional neural networks
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max
…

… max-pooling
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Within or across feature maps
Before or after spatial pooling

Normalization
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Feature Maps 
Feature Maps  

After Contrast Normalization
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Compare: SIFT Descriptor
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Lowe  
[IJCV 2004]
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A CNN unit contains the following layers:
1.Convolutional layer containing a set of filters 
2.Pooling layer  
3.Non-linearity 
Deep CNN: a stack of multiple CNN units
‣ Inspired by the human visual system (V1, V2, V3 ….)

Convolutional neural networks
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Hubel and Weisel, 1968
Structure of V1

“simple” cells: edge detectors
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C1: Convolutional layer with 6 filters of size 5x5
Output: 6x28x28
Number of parameters: (5x5+1)*6 = 156
Connections: (5x5+1)x(6x28x28) = 122304
Connections in a fully connected network: (32x32+1)x(6X28x28)

Example: LeNet5
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6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage

LeCun 98
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S2: Subsampling layer
Subsample by taking the sum of non-overlapping 2x2 windows
‣ Multiply the sum by a constant and add bias 
Number of parameters: 2x6=12
Pass the output through a sigmoid non-linearity
Output: 6x14x14

Example: LeNet5
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C3: Convolutional layer with 16 filters of size 6x6
Each is connected to a subset: 
Number of parameters: 1,516
Number of connections: 151,600
Output: 16x10x10

Example: LeNet5
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S4: Subsampling layer
Subsample by taking the sum of non-overlapping 2x2 windows
‣ Multiply by a constant and add bias 
Number of parameters: 2x16 = 32
Pass the output through a sigmoid non-linearity
Output: 16x5x5

Example: LeNet5
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C5: Convolutional layer with 120 outputs of size 1x1
Each unit in C5 is connected to all inputs in S4
Number of parameters: (16x5x5+1)*120 = 48120

Example: LeNet5
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F6: fully connected layer 
Output: 1x1x84
Number of parameters: (120+1)*84 = 10164

OUTPUT: 10 Euclidean RBF units (one for each digit class)

Example: LeNet5
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MNIST dataset
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http://yann.lecun.com/exdb/mnist/
3-layer NN, 300+100 HU [distortions] 

Test error: 2.5%
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MNIST dataset: errors on the test set
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ImageNet Challenge 2012
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[Deng et al. CVPR 2009] 

• 14+ million labeled images, 20k classes 
• Images gathered from Internet 
• Human labels via Amazon Turk  
• The challenge: 1.2 million training 

images, 1000 classes
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Similar to LeCun’98 with some differences: 
‣ Bigger model (7 hidden layers, 650,000 units, 60,000,000 params) 
‣ More data (106 vs. 103 images) — ImageNet dataset [Deng et al.] 
‣ GPU implementation (50x speedup over CPU) ~ 2 weeks to train 
‣ Some twists: Dropout regularization, ReLU max(0,x) 
Won the ImageNet challenge in 2012 by a large margin!

ImageNet Challenge 2012
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Krizhevsky, I. Sutskever, and G. Hinton,  
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
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How do we visualize a complicated, non-linear function? 

Good paper: Visualizing and Understanding Convolutional Networks, 
Matthew D. Zeiler, Rob Fergus, ECCV 2014 

Good toolbox: Understanding Neural Networks Through Deep 
Visualization, Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas 
Fuchs, and Hod Lipson, ICML Deep Learning Workshop, 2015 
‣ http://yosinski.com/deepvis 

Many other resources online (search for visualizing deep networks)

What do these networks learn?
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Layer 1: Learned filters
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similar to “edge” and “blob” detectors
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• Patches from validation images that give maximal activation of a given feature map 

Layer 1: Top-9 Patches
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Layer 2: Top-9 Patches
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Layer 3: Top-9 Patches
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Layer 4: Top-9 Patches
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Layer 5: Top-9 Patches
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Evolution of Features During Training
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Evolution of Features During Training
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Mask parts of input with occluding square

Monitor output (class probability)

Occlusion Experiment
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Total activation in most  
active 5th layer feature map

Other activations from  
same feature map
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p(True class) Most probable class
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Total activation in most  
active 5th layer feature map

Other activations from  
same feature map
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p(True class) Most probable class
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Total activation in most  
active 5th layer feature map

Other activations from  
same feature map
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http://www.image-net.org/challenges/LSVRC/2013/results.php

ImageNet Classification 2013 Results
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ImageNet 2014 - Test error at 0.07 (Google & Oxford groups)
http://image-net.org/challenges/LSVRC/2014/results
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Architecture of Krizhevsky et al.
8 layers total
Trained on ImageNet
18.1% top-5 error 

How important is depth?
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Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full
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Remove top fully connected layer 
‣ Layer 7 

Drop 16 million parameters

Only 1.1% drop in performance!

How important is depth?
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Layer 1: Conv + Pool
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Layer 3: Conv
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Layer 5: Conv + Pool
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Remove both fully connected layers 
‣ Layer 6 & 7 

Drop ~50 million parameters

5.7% drop in performance

How important is depth?
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Layer 1: Conv + Pool

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool
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Now try removing upper feature extractor layers:
‣ Layers 3 & 4 

Drop ~1 million parameters

3.0% drop in performance

How important is depth?
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Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Layer 7: Full
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Now try removing upper feature extractor layers 
& fully connected:
‣ Layers 3, 4, 6 ,7 

Now only 4 layers

33.5% drop in performance

à Depth of network is key

How important is depth?
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Deep Residual Learning for Image 
Recognition, Kaiming He, Xiangyu Zhang, 
Shaoqing Ren, Jian Sun, ECCV 2016 

Winner of ImageNet challenge 2015 
5.7% top5 error 

VGG-19 (3x more layers than AlexNet) 
ResNet (2-20x more layers than VGG-19)

Can we go deeper?
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Take model trained on ImageNet
Take outputs of 6th or 7th layer before or after nonlinearity as features
Train linear classifiers on these features (like retraining the last layer 
of the network)
Optionally back-propagate: fine-tune features and/or classifier on 
new dataset

Transfer learning
Techniques to generalize from one task to another 
Training and testing distributions may be different 

Will driving in Amherst help driving in Boston?

CNNs for small datasets
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Tapping off features at each Layer
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Plug features from each layer into linear classifier

Higher layers are better
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Results on benchmarks
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[1] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition, arXiv preprint, 2014

[1] SUN 397 dataset (DeCAF)[1] Caltech-101 (30 samples per class)

[2] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, CNN Features off-the-shelf: an Astounding Baseline for 
Recognition, arXiv preprint, 2014

[2] MIT-67 Indoor Scenes dataset 
(OverFeat)[1] Caltech-UCSD Birds (DeCAF)
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CNN features for face verification
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Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-Level 
Performance in Face Verification, CVPR 2014
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Cuda-convnet (Alex Krizhevsky, Google)
‣ High speed convolutions on the GPU 
Caffe (Y. Jia and others, Berkeley)
‣ High performance CNNs 
‣ Flexible CPU/GPU computations 
Overfeat (NYU)
MatConvNet (Andrea Vedaldi, Oxford)
‣ An easy to use toolbox for CNNs from MATLAB 
‣ Comparable performance/features with Caffe 

‣ TensforFlow (Google)
Torch (Facebook, Google, academia, etc.)

Many others ….

Open-source CNN software
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Motivation: non-linearity
Ingredients of a neural network
‣ hidden units, link functions 
Training by back-propagation
‣ random initialization, chain rule, stochastic gradients, momentum 
‣ Practical issues: learning, network architecture 
Theoretical properties:
‣ A two-layer network is a universal function approximator 
‣ However, deeper networks can be more efficient at approximating 

certain functions 
Convolutional neural networks:
‣ Good for vision problems where inputs have local structure 
‣ Shared structure of weights leads to significantly fewer parameters

Summary
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Multilayer neural network figure source:
‣ http://www.ibimapublishing.com/journals/CIBIMA/2012/525995/525995.html 
Cat image: http://www.playbuzz.com/abbeymcneill10/which-cat-breed-are-you
More about the structure of the visual processing system
‣ http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
ImageNet visualization slides are by Rob Fergus @ NYU/Facebook 
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf
LeNet5 figure from: http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
Chain rule of derivatives: http://en.wikipedia.org/wiki/Chain_rule

Slides credit
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