Neural Networks

Subhransu Maji

CMPSCI 670: Computer Vision November 8, 2016

Motivation

- ◆ One of the main weakness of linear models is that they are linear
- ◆ Decision trees can model non-linear boundaries
- ◆ Neural networks are yet another non-linear classifier
- ◆ Take the biological inspiration further by chaining together perceptrons
- ◆ Allows us to use what we learned about linear models:
 - Loss functions, regularization, optimization

CMPSCI 670

Subhransu Maji (UMASS)

Traditional recognition approach

- Features are not learned
- Trainable classifier is often generic (e.g. SVM)

Traditional recognition approach

- Features are key to recent progress in recognition
- Multitude of hand-designed features currently in use SIFT, HOG,
- Where next? Better classifiers? Or keep building more features?

McAllester and Ramanan, PAMI 2007

CMPSCI 670

Subhransu Maji (UMASS)

CMPSCI 670

Expressive power of a two-layer network

- ◆ Theorem [Kurt Hornik et al., 1989]: Let F be a continuous function on a bounded subset of D-dimensional space. Then there exists a two-layer network F with finite number of hidden units that approximates \hat{F} arbitrarily well. Namely, for all x in the domain of F, $|F(x)-\hat{F}(x)| < \varepsilon$
- ◆ Colloquially "a two-layer network can approximate any function"
- This is true for arbitrary link function
- Going from one to two layers dramatically improves the representation power of the network

CMPSCI 670

Subhransu Maji (UMASS)

How many hidden units?

- ◆ D dimensional data with K hidden units has(D+2)K+1 parameters
- ▶ (D+1)K in the first layer (1 for the bias) and K+1 in the second layer
- ◆ With N training examples, set the number of hidden units K ~ N/D to keep the number of parameters comparable to size of training data
- K is both a form of regularization and inductive bias
- Training and test error vs. K

CMPSCI 670

Subhransu Maji (UMASS)

Training a two-layer network

◆ Optimization framework:

$$\left| \min_{W,v} \sum_{n} \frac{1}{2} \left(y_n - \sum_{i} \mathbf{v}_i f(\mathbf{w}_i^T \mathbf{x}_n) \right)^2 \right|$$

- ◆ Loss minimization: replace squared-loss with any other
- ◆ Regularization:
 - Add a regularization (e.g. l₂-norm of the weights)
 - Other ideas: dropout, batch normalization, etc
- Optimization by gradient descent
- Highly non-convex problem so no guarantees about optimality

Training a two-layer network

Optimization framework:

$$\min_{W,v} \sum_{n} \frac{1}{2} \left(y_n - \sum_{i} \mathbf{v}_i f(\mathbf{w}_i^T \mathbf{x}_n) \right)^2$$

or equivalently.

$$\min_{W,v} \sum_{n} \frac{1}{2} (y_n - \mathbf{v}^T \mathbf{h}_n)^2 \qquad \mathbf{h}_{i,n} = f(\mathbf{w}_i^T \mathbf{x}_n)$$

$$\mathbf{h}_{i,n} = f(\mathbf{w}_i^T \mathbf{x}_n)$$

Computing gradients: second layer

$$\frac{dL_n}{d\mathbf{v}} = -\left(y_n - \mathbf{v}^T \mathbf{h}_n\right) \mathbf{h}_n$$

least-squares regression

CMPSCI 670 Subhransu Maii (UMASS)

Training a two-layer network

Optimization framework:

$$\left| \min_{W,v} \sum_{n} \frac{1}{2} \left(y_n - \sum_{i} \mathbf{v}_i f(\mathbf{w}_i^T \mathbf{x}_n) \right)^2 \right|$$

or equivalently.

$$\min_{W,v} \sum_{n} \frac{1}{2} (y_n - \mathbf{v}^T \mathbf{h}_n)^2 \mathbf{h}_{i,n} = f(\mathbf{w}_i^T \mathbf{x}_n)$$

$$\mathbf{h}_{i,n} = f(\mathbf{w}_i^T \mathbf{x}_n)$$

◆ Computing gradients: first layer

Chain rule of derivatives

$$\frac{dL_n}{d\mathbf{w}_i} = \sum_j \frac{dL_n}{d\mathbf{h}_j} \frac{d\mathbf{h}_j}{d\mathbf{w}_i}$$

$$O \text{ if } i \neq j$$

 $\frac{dL_n}{d\mathbf{w}_i} = \sum_j \frac{dL_n}{d\mathbf{h}_j} \frac{d\mathbf{h}_j}{d\mathbf{w}_i} \longrightarrow \frac{dL_n}{d\mathbf{w}_i} = -\left(y_n - v^T h_n\right) v_i f'(\mathbf{w}_i^T \mathbf{x}_n) \mathbf{x}_n$ also called as back-propagation

also called as back-propagation

Neural Networks

Subhransu Maji

CMPSCI 670: Computer Vision November 10, 2016

Practical issues: gradient descent

- Easy to get gradients wrong!
 - \rightarrow One strategy is to learn v by fixing W (least-squares) and then learn W by fixing v and iterate between the two steps.
- ◆ Use online gradients (or stochastic gradients)

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{dL_n}{d\mathbf{w}}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{dL_n}{d\mathbf{w}} \qquad \qquad \frac{dL}{d\mathbf{w}} = \sum_n \frac{dL_n}{d\mathbf{w}}$$
batch online

- ◆ Learning rate: start with a high value and reduce it when the validation error stops decreasing
- ◆ Momentum: move out small local minima
 - Usually set to a high value: $\beta = 0.9$

$$\Delta \mathbf{w}^{(t)} = \beta \Delta \mathbf{w}^{(t-1)} + (1 - \beta) \left(-\eta \frac{dL_n}{d\mathbf{w}^{(t)}} \right)$$

CMPSCI 670

Subhransu Maji (UMASS)

Practical issues: initialization

- Initialization didn't matter for linear models
 - Guaranteed convergence to global minima as long as step size is suitably chosen since the objective is convex
- ◆ Neural networks are sensitive to initialization
 - Many local minima
- > Symmetries: reorder the hidden units and change the weights accordingly to get another network that produces identical outputs
- ◆ Train multiple networks with randomly initialized weights

CMPSCI 670

Beyond two layers

- ◆ The architecture generalizes to any directed acyclic graph (DAG)
- For example a multi-layer network
- One can order the vertices in a DAG such that all edges go from left to right (topological sorting)

prediction: forward propagation

gradients: backward propagation

CMPSCI 670

Subhransu Maji (UMASS)

Breadth vs. depth

- Why train deeper networks?
- ◆ We will borrow ideas from theoretical computer science
 - A boolean circuit is a DAG where each node is either an input, an AND gate, an OR gate, or a NOT gate. One of these is designated as an output gate.
- Circuit complexity of a boolean function f is the size of the smallest circuit (i.e., with the fewest nodes) that can compute f.
- ◆ The parity function: the number of 1s is even or odd

$$\mathsf{parity}(\mathbf{x}) = \left(\sum_d x_d\right) \mod 2$$

ullet [Håstad, 1987] A depth-k circuit requires $\exp\left(n^{\frac{1}{k-1}}\right)$ to compute the parity function of n inputs

CMPSCI 670

Subhransu Maji (UMASS)

40

Breadth vs. depth

- ◆ Why <u>not</u> train deeper networks?
- Selecting the architecture is daunting
- How many hidden layers
- How many units per hidden layer
- Vanishing gradients
 - Gradients shrink as one moves away from the output layer
- Convergence is slow
- ◆ Training deep networks is an active area of research
- Layer-wise initialization (perhaps using unsupervised data)
- Engineering: GPUs to train on massive labelled datasets

Convolutional neural networks

- ◆ Images are not just a collection of pixels
- ▶ Lots of local structure: edges, corners, etc
- These statistics are translation invariant
- ◆ The convolution operation:

filter: horizontal edge

image

absolute value of the output of convolution of the image and filter

CMPSCI 670

Subhransu Maji (UMASS)

CMPSCI 670

Convolutional neural networks

- ◆ A CNN unit contains the following layers:
 - 1. Convolutional layer containing a set of filters
 - 2. Pooling layer
 - 3. Non-linearity
- ◆ Deep CNN: a stack of multiple CNN units
 - ▶ Inspired by the human visual system (V1, V2, V3)

Example: LeNet5 C3: I. maps 16@10x10 S4: I. maps 16@5x5 S2: I. maps 1

Example: LeNet5

- ◆ S4: Subsampling layer
- ◆ Subsample by taking the sum of non-overlapping 2x2 windows
 - Multiply by a constant and add bias
- ◆ Number of parameters: 2x16 = 32
- ◆ Pass the output through a sigmoid non-linearity
- ◆ Output: 16x5x5

CMPSCI 670

Subhransu Maji (UMASS)

Example: LeNet5

- ◆ C5: Convolutional layer with 120 outputs of size 1x1
- ◆ Each unit in C5 is connected to all inputs in S4
- ◆ Number of parameters: (16x5x5+1)*120 = 48120

MPSCI 670 Subhransu Maji (UMASS)

Example: LeNet5

- ◆ F6: fully connected layer
- ◆ Output: 1x1x84
- ◆ Number of parameters: (120+1)*84 = 10164
- ◆ OUTPUT: 10 Euclidean RBF units (one for each digit class)

$$y_i = \sum_j (x_j - w_{ij})^2.$$

CMPSCI 670 Subhransu Maii (UMASS)

MNIST dataset

368/796645 6457863456 4819018896 4819018896 461864/5607 7592658197 222234807 24896986/

540,000 artificial distortions

+ 60,000 original

Test error: 0.8%

60,000 original datasets

Test error: 0.95%

0	0	0	0	0	0	0	0	0	0
)	J)	١	J	J	J))	J
2	2	2	2	2	Z	2	2	Z	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
2	S	2	S	2	2	2	2	2	S
4	4	4	4	4	4	4	4	4	4
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
9	q	9	9	9	q	9	9	q	9

3-layer NN, 300+100 HU [distortions] Test error: 2.5%

http://vann.lecun.com/exdb/mnist/

CMPSCI 670

31

Subhransu Maji (UMASS)

32

MNIST dataset: errors on the test set

CMPSCI 670

Subhransu Maji (UMASS)

Neural Networks

Subhransu Maji

CMPSCI 670: Computer Vision

November 15, 2016

ImageNet Challenge 2012

[Deng et al. CVPR 2009]

IM**∴**GENET

- 14+ million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon Turk
- The challenge: 1.2 million training images, 1000 classes

ImageNet Challenge 2012

- ◆ Similar to LeCun'98 with some differences:
- → Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
- More data (10⁶ vs. 10³ images) ImageNet dataset [Deng et al.]
- ▶ GPU implementation (50x speedup over CPU) ~ 2 weeks to train
- Some twists: Dropout regularization, ReLU max(0,x)
- ◆ Won the ImageNet challenge in 2012 by a large margin!

Krizhevsky, I. Sutskever, and G. Hinton,

ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

CMPSCI 670 Subhransu Maji (UMASS)

CMPSCI 670

Subhransu Maji (UMASS)

36

What do these networks learn?

- ◆ How do we visualize a complicated, non-linear function?
- ◆ Good paper: <u>Visualizing and Understanding Convolutional Networks</u>, Matthew D. Zeiler, Rob Fergus, ECCV 2014
- ◆ Good toolbox: <u>Understanding Neural Networks Through Deep Visualization</u>, Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, ICML Deep Learning Workshop, 2015
- http://yosinski.com/deepvis
- ◆ Many other resources online (search for visualizing deep networks)

CMPSCI 670 Subhransu Maji (UMASS)

37

CMPSCI 670

Layer 1: Learned filters similar to "edge" and "blob" detectors

Occlusion Experiment

- Mask parts of input with occluding square
- Monitor output (class probability)

CNNs for small datasets

- Take model trained on ImageNet
- ◆ Take outputs of 6th or 7th layer before or after nonlinearity as features
- Train linear classifiers on these features (like retraining the last layer of the network)
- Optionally back-propagate: fine-tune features and/or classifier on new dataset
- Transfer learning
 - Techniques to generalize from one task to another
 - Training and testing distributions may be different
 - Will driving in Amherst help driving in Boston?

Tapping off features at each Layer

Plug features from each layer into linear classifier

	Cal-101	Cal-256
	(30/class)	(60/class)
SVM (1)	44.8 ± 0.7	24.6 ± 0.4
SVM (2)	66.2 ± 0.5	39.6 ± 0.3
SVM (3)	72.3 ± 0.4	46.0 ± 0.3
SVM (4)	76.6 ± 0.4	51.3 ± 0.1
SVM (5)	86.2 ± 0.8	65.6 ± 0.3
SVM (7)	85.5 ± 0.4	$\textbf{71.7} \pm \textbf{0.2}$

Higher layers are better

Results on benchmarks

[1] Caltech-101 (30 samples per class)

	DeCAF ₅	DeCAF ₆	DeCAF ₇
LogReg	63.29 ± 6.6	84.30 ± 1.6	84.87 ± 0.6
LogReg with Dropout	-	86.08 ± 0.8	85.68 ± 0.6
SVM	77.12 ± 1.1	84.77 ± 1.2	83.24 ± 1.2
SVM with Dropout	-	86.91 ± 0.7	85.51 ± 0.9
Yang et al. (2009)		84.3	
Jarrett et al. (2009)		65.5	

[1] Caltech-UCSD Birds (DeCAF)

Method	Accuracy
DeCAF ₆	58.75
DPD + DeCAF ₆	64.96
DPD (Zhang et al., 2013)	50.98
POOF (Berg & Belhumeur, 2013)	56.78

[1] SUN 397 dataset (DeCAF)

	DeCAF ₆	DeCAF ₇	
LogReg SVM	40.94 ± 0.3 39.36 ± 0.3	$40.84 \pm 0.3 \\ 40.66 \pm 0.3$	
Xiao et al. (2010)	38.0		

[2] MIT-67 Indoor Scenes dataset (OverFeat)

Method	mean Accuracy
ROI + Gist[36]	26.05
DPM[30]	30.40
Object Bank[25]	37.60
RBow[31]	37.93
BoP[22]	46.10
miSVM[26]	46.40
D-Parts[40]	51.40
IFV[22]	60.77
MLrep[11]	64.03
CNN-SVM	58.44

[1] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, <u>DeCAF: A Deep Convolutional Activation</u> <u>Feature for Generic Visual Recognition</u>, arXiv preprint, 2014

[2] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, <u>CNN Features off-the-shelf: an Astounding Baseline for Recognition</u>, arXiv preprint, 2014 MPSCI 670
MPSCI 670

CNN features for face verification 32x3x3x32 @25x25 0.95 - Human cropped (97.5%) DeepFace-ensemble (97.35%) 0.94 DeepFace-single (97.00%) 0.93 TL Joint Baysian (96.33%) High-dimensional LBP (95.17%) Tom-vs-Pete + Attribute (93.30% combined Joint Baysian (92.42%) 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 false positive rate Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014 Subhransu Maji (UMASS)

Open-source CNN software

- <u>Cuda-convnet</u> (Alex Krizhevsky, Google)
 - ▶ High speed convolutions on the GPU
- ◆ Caffe (Y. Jia and others, Berkeley)
 - High performance CNNs
 - Flexible CPU/GPU computations
- ◆ Overfeat (NYU)
- ◆ MatConvNet (Andrea Vedaldi, Oxford)
 - An easy to use toolbox for CNNs from MATLAB

Subhransu Maji (UMASS)

- Comparable performance/features with Caffe
- ► <u>TensforFlow</u> (Google)
- ◆ Torch (Facebook, Google, academia, etc.)
- ◆ Many others

Summary

- ◆ Motivation: non-linearity
- ◆ Ingredients of a neural network
 - hidden units, link functions
- Training by back-propagation
 - random initialization, chain rule, stochastic gradients, momentum
 - Practical issues: learning, network architecture
- Theoretical properties:

63

- A two-layer network is a universal function approximator
- However, deeper networks can be more efficient at approximating certain functions
- Convolutional neural networks:
 - Good for vision problems where inputs have local structure
- Shared structure of weights leads to significantly fewer parameters

Slides credit

- ◆ Multilayer neural network figure source:
 - http://www.ibimapublishing.com/journals/CIBIMA/2012/525995/525995.html
- ◆ Cat image: http://www.playbuzz.com/abbeymcneill10/which-cat-breed-are-you
- ◆ More about the structure of the visual processing system
 - http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
- ◆ ImageNet visualization slides are by Rob Fergus @ NYU/Facebook http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf
- ◆ LeNet5 figure from: http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
- ◆ Chain rule of derivatives: http://en.wikipedia.org/wiki/Chain_rule