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A neuron (or how our brains work) 
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Neuroscience 101
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Input are feature values
Each feature has a weight
Sum in the activation

If the activation is:
‣ > b, output class 1 
‣ otherwise, output class 2

Perceptron
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Imagine 3 features (spam is “positive” class):
‣ free (number of occurrences of “free”) 
‣ money (number of occurrences of “money”) 
‣ BIAS (intercept, always has value 1)

Example: Spam
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In the space of feature vectors
‣ examples are points (in D dimensions) 
‣ an weight vector is a hyperplane (a D-1 dimensional object) 
‣ One side corresponds to y=+1 
‣ Other side corresponds to y=-1 
Perceptrons are also called as linear classifiers

Geometry of the perceptron
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Initialize 
for iter = 1,…,T

‣ for i = 1,..,n
• predict according to the current model

• if               , no change
• else, 

Learning a perceptron
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yi = ŷi
w w + yixi

w [0, . . . , 0]

(x1, y1), (x2, y2), . . . , (xn, yn)Input: training data
Perceptron training algorithm [Rosenblatt 57]
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Separability: some parameters will classify 
the training data perfectly

Convergence: if the training data is separable 
then the perceptron training will eventually 
converge [Block 62, Novikoff 62]

Mistake bound: the maximum number of 
mistakes is related to the margin

Properties of perceptrons
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Convergence: if the data isn’t separable, 
the training algorithm may not terminate
‣ noise can cause this 
‣ some simple functions are not 

separable (xor) 

Mediocre generation: the algorithm 
finds a solution that “barely” separates 
the data

Overtraining: test/validation accuracy 
rises and then falls
‣ Overtraining is a kind of overfitting

Limitations of perceptrons
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Linear models
‣ Perceptron: model and learning algorithm combined as one 
‣ Is there a better way to learn linear models? 
We will separate models and learning algorithms
‣ Learning as optimization 
‣ Surrogate loss function 
‣ Regularization 
‣ Gradient descent 
‣ Batch and online gradients 
‣ Subgradient descent 
‣ Support vector machines

Overview
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}model design

} optimization
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Learning as optimization
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min
w
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1[ynw
T
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fewest mistakes

The perceptron algorithm will find an optimal w if the data is separable
‣ efficiency depends on the margin and norm of the data 
However, if the data is not separable, optimizing this is NP-hard
‣ i.e., there is no efficient way to minimize this unless P=NP
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In addition to minimizing training error, we want a simpler model
‣ Remember our goal is to minimize generalization error 
‣ Recall the bias and variance tradeoff for learners 
We can add a regularization term R(w) that prefers simpler models 
‣ For example we may prefer decision trees of shallow depth 
Here λ is a hyperparameter of optimization problem

Learning as optimization
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simpler modelfewest mistakes

hyperparameter
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The questions that remain are:
‣ What are good ways to adjust the optimization problem so that 

there are efficient algorithms for solving it? 
‣ What are good regularizations R(w) for hyperplanes? 
‣ Assuming that the optimization problem can be adjusted 

appropriately, what algorithms exist for solving the regularized 
optimization problem?

Learning as optimization
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Zero/one loss is hard to optimize
‣ Small changes in w can cause large changes in the loss 
Surrogate loss: replace Zero/one loss by a smooth function
‣ Easier to optimize if the surrogate loss is convex 
Examples:

Convex surrogate loss functions
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What are good regularization functions R(w) for hyperplanes?
We would like the weights —
‣ To be small — 

➡ Change in the features cause small change to the score 
➡ Robustness to noise 

‣ To be sparse — 
➡ Use as few features as possible 
➡ Similar to controlling the depth of a decision tree 

This is a form of inductive bias

Weight regularization
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Just like the surrogate loss function, we would like R(w) to be convex
Small weights regularization

Sparsity regularization

Family of “p-norm” regularization

Weight regularization
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Contours of p-norms
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convex for p � 1

http://en.wikipedia.org/wiki/Lp_space
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Contours of p-norms
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not convex for 0  p < 1

p =
2

3

p = 0

R(count)(w) =
X

d

1[|wd| > 0]

Counting non-zeros:

http://en.wikipedia.org/wiki/Lp_space
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Select a suitable:
‣ convex surrogate loss 
‣ convex regularization 
Select the hyperparameter λ
Minimize the regularized objective with respect to w
This framework for optimization is called Tikhonov regularization or 
generally Structural Risk Minimization (SRM)

General optimization framework
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http://en.wikipedia.org/wiki/Tikhonov_regularization
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Optimization by gradient descent
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Convex function

p1

p2

p5 p6

⌘1 p3
⌘2 p4

⌘3

step size

local optima = global optima

local optima

global optima

Non-convex function

pk+1  pk � ⌘kg
(k)

take a step down the gradient

g(k)  rpF (p)|pk

compute gradient at the current location
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Choice of step size
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Good step size
p1

p2

p3

p4
p5 p6

p1 p2

p3 p4p5 p6

⌘1

⌘1

Bad step size

The step size is important — 
‣ too small: slow convergence 
‣ too large: no convergence 
A strategy is to use large step sizes initially 
and small step sizes later:

There are methods that converge faster by 
adapting step size to the curvature of the 
function
‣ Field of convex optimization

⌘t  ⌘0/(t0 + t)

http://stanford.edu/~boyd/cvxbook/
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Example: Exponential loss
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Batch and online gradients
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w w � ⌘
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online gradient
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w w � ⌘
dL
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objective

gradient descent

sum of n gradients gradient at nth point
update weight after you see all points update weights after you see each point

Online gradients are the default method for multi-layer perceptrons
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The hinge loss is not differentiable at z=1
Subgradient is any direction that is below the function
For the hinge loss a possible subgradient is:

Subgradient
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Example: Hinge loss
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Example: Squared loss
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equivalent loss
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Example: Squared loss
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gradient

exact
closed-form

solution

At optima the gradient=0

objective
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Assume, we have D features and N points
Overall time via matrix inversion
‣ The closed form solution involves computing: 

‣ Total time is O(D2N + D3 + DN), assuming O(D3) matrix inversion 
‣ If N > D, then total time is O(D2N) 
Overall time via gradient descent
‣ Gradient: 

‣ Each iteration: O(ND); T iterations: O(TND) 
Which one is faster?
‣ Small problems D < 100: probably faster to run matrix inversion 
‣ Large problems D > 10,000: probably faster to run gradient descent

Matrix inversion vs. gradient descent
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Under suitable conditions*, provided you pick the step sizes 
appropriately, the convergence rate of gradient descent is O(1/N)
‣ i.e., if you want a solution within 0.0001 of the optimal you have to 

run the gradient descent for N=1000 iterations. 
For linear models (hinge/logistic/exponential loss) and squared-norm 
regularization there are off-the-shelf solvers that are fast in practice: 
SVMperf , LIBLINEAR, PEGASOS
‣ SVMperf , LIBLINEAR use a different optimization method

Optimization for linear models
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* the function is strongly convex:
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Even if a feature is useful some normalization may be good
Per-feature normalization
‣ Centering 

‣ Variance scaling 

‣ Absolute scaling 

‣ Non-linear transformation 
➡ square-root  

Per-example normalization
‣ fixed norm for each example

Feature normalization
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||x|| = 1

xn,d  xn,d � µd
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Caltech-101 image classification

41.6% linear
63.8% square-rootxn,d  

p
xn,d

(corrects for burstiness)
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Figures of various “p-norms” are from Wikipedia
‣ http://en.wikipedia.org/wiki/Lp_space 
Some of the slides are based on CIML book by Hal Daume III

Slides credit
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Appendix: code for surrogateLoss
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2/20/15 11:12 AM /Users/smaji/Dropbo.../surrogateLoss.m 1 of 1

% Code to plot various loss functions
y1=1;
y2=linspace(−2,3,500);
zeroOneLoss = y1*y2 <=0;
hingeLoss = max(0, 1−y1*y2);
logisticLoss = log(1+exp(−y1*y2))/log(2);
expLoss = exp(−y1*y2);
squaredLoss = (y1−y2).^2;
 
% Plot them
figure(1); clf; hold on;
plot(y2, zeroOneLoss,’k−’,’LineWidth’,1);
plot(y2, hingeLoss,’b−’,’LineWidth’,1);
plot(y2, logisticLoss,’r−’,’LineWidth’,1);
plot(y2, expLoss,’g−’,’LineWidth’,1);
plot(y2, squaredLoss,’m−’,’LineWidth’,1);
ylabel(’Prediction’,’FontSize’,16);
xlabel(’Loss’,’FontSize’,16);
legend({’Zero/one’, ’Hinge’, ’Logistic’, ’Exponential’, ’Squared’}, ’Location’, 
’NorthEast’, ’FontSize’,16);
box on;
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