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Perceptron

« Input are feature values
« Each feature has a weight
+ Sum in the activation

Cell body or Soma

activation(w, x) = Z wir; = wix
3
« If the activation is: w1
» > b, output class 1 F
» otherwise, output class 2 . W2
B~

Subhransu Maji (UMASS)

x — (x,1)

wlix +b— (w,b)T(x,1)
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Example: Spam

+ Imagine 3 features (spam is “positive” class):
» free (number of occurrences of “free”)
» money (number of occurrences of “money”)
» BIAS (intercept, always has value 1)

email x
BIAS 1 BIAS
free 1 free
“fr ”
ee money money : 1 money :

wlx >0 — SPAM!!
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Geometry of the perceptron Learning a perceptron

+ In the space of feature vectors Input: training data (x1,91), (X2,92)5 - -+, (Xn» Yn)

» examples are points (in D dimensions) Perceptron training algorithm [Rosenblatt 57]
» an weight vector is a hyperplane (a D-1 dimensional object) < Initialize W < [0 0]
» One side corresponds to y=+1 eforiter=1..T Y yix
= ey K3
» Other side corresponds to y=-1 sfori=1..n \id
+ Perceptrons are also called as linear classifiers . prec;i(;t according to the current model by
“g’ 2 N | if wi'x; >0
w 2\ +1 = SPAM ) -1 if wi'x; <0
BIAS : -3 1 e if i = ¥;, no change yi = —1
free : 4 L
money : 2 3 ° else,w <— W + y;X;
-1 =HAM 0 1
wlix = error driven, online, activations increase for +, randomize
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Properties of perceptrons Limitations of perceptrons
+ Separability: some parameters will classify Separable + Convergence: if the data isn’t separable,

the training algorithm may not terminate
» noise can cause this

» some simple functions are not
separable (xor)

the training data perfectly

+ Convergence: if the training data is separable

then the perceptron training will eventually -
converge [Block 62, Novikoff 62] -
- + Mediocre generation: the algorithm -
+ Mistake bound: the maximum number of finds a solution that “barely” separates
mistakes is related to the margin Non-Separable the data
assuming, ||x;|| <1 _ + 4 o o training
+ o4 + Overtraining: test/validation accuracy e}
Hmistakes < 2 D= rises and then falls N
6 + L - s 9 test
» Overtraining is a kind of overfitting o held-out

— g T
0 = MaXy MIN (x; ;) [yz-w Xi] +
iterations

such that, ||w|| =1 S
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Overview

+ Linear models
» Perceptron: model and learning algorithm combined as one
» |s there a better way to learn linear models?
+ We will separate models and learning algorithms
» Learning as optimization
» Surrogate loss function }model design
» Regularization
» Gradient descent
» Batch and online gradients} optimization
» Subgradient descent

» Support vector machines
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Learning as optimization

min Z 1[y,w’x, < 0]
fewest mistakes

+ The perceptron algorithm will find an optimal w if the data is separable
» efficiency depends on the margin and norm of the data

+ However, if the data is not separable, optimizing this is NP-hard
» i.e., there is no efficient way to minimize this unless P=NP
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Learning as optimization

hyperparameter

H‘l“i,nz 1y, wlx, < 0]+ AR(w)
n T \
fewest mistakes simpler model
+ In addition to minimizing training error, we want a simpler model
» Remember our goal is to minimize generalization error
» Recall the bias and variance tradeoff for learners
+ We can add a regularization term R(w) that prefers simpler models
» For example we may prefer decision trees of shallow depth
+ Here A is a hyperparameter of optimization problem
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Learning as optimization

hyperparameter

min Z 1[y,w'x, < 0] + AR(wW)
w
n T \
fewest mistakes simpler model
+ The questions that remain are:
» What are good ways to adjust the optimization problem so that
there are efficient algorithms for solving it?
» What are good regularizations R(w) for hyperplanes?
» Assuming that the optimization problem can be adjusted

appropriately, what algorithms exist for solving the regularized
optimization problem?
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Convex surrogate loss functions

+ Zero/one loss is hard to op

timize

N\

Weight regularization

+ What are good regularization functions R(w) for hyperplanes?

» Small changes in w can cause large changes in the loss ~ concave + We would like the weights —
+ Surrogate loss: replace Zero/one loss by a smooth function » To be small —

» Easier to optimize if the surrogate loss is convex = Change in the features cause small change to the score
+ Examples: COINER - Robustness to noise

T —Zerolone y=+1 §+ wix » To be sparse —
T " loom = Use as few features as possible
— Logisti W u |
/A —E?(glsrt:zmial | Zero/one: £%V(y,7) =1[yg < 0] o ; P o
| —— Saquared Hinge: £ (y,y‘ — max{0,1 -y} = Similar to controlling the depth of a decision tree
« This is a form of inductive bias
st Logistic: £ (y,9) = @ log (1 + exp[—y#])
“ Exponential:  £®®)(y,9) = exp[—y9)]
) \ Squared:  £59(y,9) = (y — 9)*
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Weight regularization

« Just like the surrogate loss function, we would like R(w) to be convex

+ Small weights regularization

R(norm)

+ Sparsity regularization

R(Count)

@

R sqrd

de

not convex

Zl |wd| >0

+ Family of “p-norm” regulanzatlon

R(p—norm) (W
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1/p
> lwal”
d
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Contours of p-norms

lell, = (@1” + |22l + - - - + |2a[?)? convex for p > 1
[l
n Xl
2l = |l AN
i=1
Il
lallz = {
[IAl,,
2]l = max |z
m@ﬂmmﬂ@iwﬂw iki i iki —
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Contours of p-norms

W1
lzll, = (Jz1 [’ + |22|” + - - + |xa|")? not convex for 0 <p <1

_ 2
P=3
p=0
R(count)(w) — Z ]_de| > O]
d
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General optimization framework

hyperparameter

minz 14 (yn, WTXn) + AR(w)
w - \
surrogate loss regularization
+ Select a suitable:
» convex surrogate loss
» convex regularization
+ Select the hyperparameter A
+ Minimize the regularized objective with respect to w

+ This framework for optimization is called Tikhonov regularization or
generally Structural Risk Minimization (SRM)
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Optimization by gradient descent

Convex function

g(k) <« VpF(D)lp,

compute gradient at the current location

Pk+1 < Pk — nkg(k)

take a step down the gradient

step size

] local optima = global optima
Non-convex function

local optima

/

global optima
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Choice of step size

o Good step size
+ The step size is important —

» too small: slow convergence
» too large: no convergence

+ A strategy is to use large step sizes initially
and small step sizes later:

ne < 1o/ (to +1)

+ There are methods that converge faster by
adapting step size to the curvature of the
function

» Field of convex optimization

http://stanford.edu/~bo vxbook
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Example: Exponential loss

A
L(w) =Y exp(—ynw %) + S|lw||*  objective

n

ac

== Z —YnXn exXp(—ynW! x,) + AW gradient
n

WewW—1 (Z —YnXn eXP(—Yn W' Xp) + )\W) update

n
loss term regularization term

W — W + CYnXy w < (1 —nA\)w

high for misclassified points shrinks weights towards zero

similar to the perceptron update rule!

CMPSCI 670 Subhransu Maji (UMASS) 21

Batch and online gradients
L(w) = Zﬁn(w) objective

W~ W — nd— gradient descent
w

batch gradient
W< W —17
— dw

sum of n gradients

online gradient

()
W W — 1)

dw

/

gradient at nt point

update weight after you see all points  update weights after you see each point

Online gradients are the default method for multi-layer perceptrons
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Subgradient

¢inge) () wT'x) = max(0,1 — yw’'x)

t
z

-
subgradient

+ The hinge loss is not differentiable at z=1
+ Subgradient is any direction that is below the function
# For the hinge loss a possible subgradient is:

dghinge o O lf yWTX > 1
dw ) —yx otherwise
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Example: Hinge loss
L(w) = Zmax((), 1—yowlix,)+ %HWH2 objective

ac .
w zﬂ: —1[anTXn < 1]ynx, + Aw  subgradient

W W=7 (Z ~1ynw’ x, < 1ynx, + )\W) update

n

loss term regularization term

W < W + NYnXnp

!

only for points yanxn <1

w < (1 —np\)w

shrinks weights towards zero

perceptron update anTxn <0
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Example: Squared loss

A
L(w) = Z (yn —Ww'xp)" + §||w||2 objective
n
jmatrix notation
X1 X12 ... X1,D wy Y4 X1,4Wy n
X1 X202 ... X2pD wy Yq X0, 4wy Y2
XNi1 XN2 .- XND wp Y4 XN4Wg YN
X w y Y
equivalent loss
1 2, A 2
min L(w) == |[Xw-=Y||"+ = |[|lw
in - L(w) = 5 || 17+ 5 [lwll
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Example: Squared loss
min £(w) = 3 |[Xeo — Y|P+ 5 [l objectve
Vwl(w) =X" Xw —Y) + Aw

= XTXZU X"y + Aw gradient
- (xTx + AI) w-X"Y

At optima the gradient=0

(xTx+A1)w —X'y=0

exact
— (XTX + AID) w=X"Y closed-form
solution
— w= (xTx n /\ID) “1xTy
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Matrix inversion vs. gradient descent

+ Assume, we have D features and N points
+ Overall time via matrix inversion
» The closed form solution involves computing:

w = (xTx + /\ID) -1xTy

» Total time is O(D2N + D3 + DN), assuming O(D3) matrix inversion
» If N > D, then total time is O(D2N)
+ Overall time via gradient descent
» Gradient: ZTLV _ zn: 2y — WK )% + AW
» Each iteration: O(ND); T iterations: O(TND)
+ Which one is faster?
» Small problems D < 100: probably faster to run matrix inversion
» Large problems D > 10,000: probably faster to run gradient descent
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Optimization for linear models

« Under suitable conditions*, provided you pick the step sizes
appropriately, the convergence rate of gradient descent is O(1/N)

» i.e., if you want a solution within 0.0001 of the optimal you have to
run the gradient descent for N=1000 iterations.

# For linear models (hinge/logistic/exponential loss) and squared-norm
regularization there are off-the-shelf solvers that are fast in practice:
SVMpert | LIBLINEAR, PEGASOS
» SVMpert LIBLINEAR use a different optimization method

m
* the function is strongly convex: f(y) > f(z)+ Vf(z)"(y — z) + 5 lly - z|l3
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Feature normalization

+ Even if a feature is useful some normalization may be good
+ Per-feature normalization
53
= — a5
Hd N n,d

» Centering Tn,d < Tn,d — Md
n
1 2
o4 = ﬁ Z(-Tn,d - /~Ld)

rq = Max [T, q
n

» Variance scaling  Tn,d < ﬂvn,d/Ud

» Absolute scaling @, 4 ¢ Tn.a/Td

» Non-linear transformation Caltech-101 image classification

= sqguare-root

Tn,d <~ V/Tnd

(corrects for burstiness)

Object [—{Bag of ‘words’

41.6% linear

+ Per-example normalization
» fixed norm for each example ||x|| =1

CMPSCI 689 Subhransu Maji (UMASS) 29/25

63.8% square-root

Slides credit

+ Figures of various “p-norms” are from Wikipedia
» http://en.wikipedia.org/wiki/Lp space
+ Some of the slides are based on CIML book by Hal Daume IlI
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Appendix: code for surrogatelLoss

N — Zerolone
s\ ——Hinge
\ —— Logistic
A\ —— Exponential
—— Squared
5
<
S5
ke
Output g
L4
[

% Code to plot various loss functions
yl=1;

y2=linspace(-2,3,500);

zeroOneLoss = yl*y2 <=0;

hingeLoss = max(0, 1-yl*y2);

logisticLoss = log(l+exp(-yl*y2))/log(2);
expLoss = exp(-yl*y2);

squaredLoss = (yl-y2)."2;

% Plot them

figure(1l); clf; hold on;

plot(y2, zeroOneLoss,’'k—-',’LineWwidth’,1);
plot(y2, hingeLoss,’'b-’, 'LineWwidth’,1);
plot(y2, logisticLoss,’r—', 'LineWidth’,1);
plot(y2, expLoss,’g-',’LineWidth’,1);
plot(y2, squaredLoss,’'m-',’LineWidth’,1);
ylabel(’'Prediction’,’'FontSize’,16);
xlabel(’'Loss’, ’FontSize’,16);
legend({’Zero/one’, ’'Hinge’, ’'Logistic’, ’'Exponential’, ’'Squared’}, ’'Location’,k
'NorthEast’, ’‘FontSize’,16);

box onj;

Matlab code
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