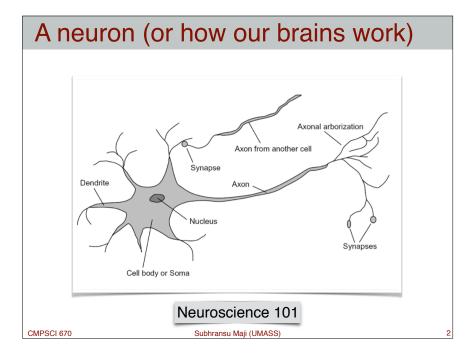
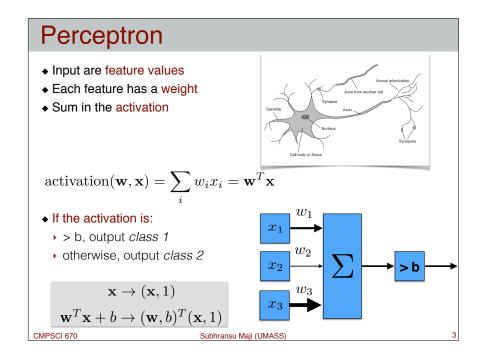
Linear models

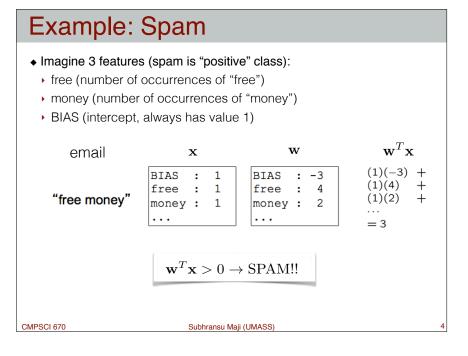
Subhransu Maji

CMPSCI 670: Computer Vision

November 3, 2016

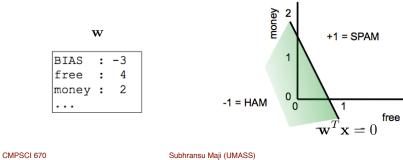






Geometry of the perceptron

- ◆ In the space of feature vectors
 - examples are points (in D dimensions)
 - → an weight vector is a hyperplane (a D-1 dimensional object)
 - ▶ One side corresponds to y=+1
 - Other side corresponds to y=-1
- Perceptrons are also called as linear classifiers



Learning a perceptron

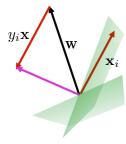
Input: training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Perceptron training algorithm [Rosenblatt 57]

- Initialize $\mathbf{w} \leftarrow [0, \dots, 0]$
- ♦ for iter = 1,...,T
 - ▶ for i = 1,...,n
 - predict according to the current model

$$\hat{y}_i = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x}_i > 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_i \le 0 \end{cases}$$

- ullet if $y_i=\hat{y}_i$, no change
- else, $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$



 $y_i = -1$

error driven, online, activations increase for +, randomize

I 670 Subhransu Maji (UMASS)

Properties of perceptrons

- Separability: some parameters will classify the training data perfectly
- ◆ Convergence: if the training data is separable then the perceptron training will eventually converge [Block 62, Novikoff 62]
- Mistake bound: the maximum number of mistakes is related to the margin

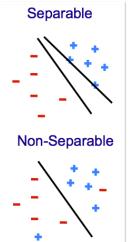
assuming,
$$||\mathbf{x}_i|| \le 1$$

#mistakes
$$< \frac{1}{\delta^2}$$

$$\delta = \max_{\mathbf{w}} \min_{(\mathbf{x}_i, y_i)} [y_i \mathbf{w}^T \mathbf{x}_i]$$

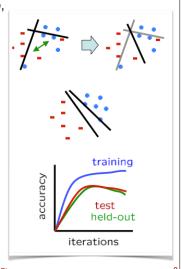
such that, $||\mathbf{w}|| = 1$

CMPSCI 670 Subhransu Maji (UMASS)



Limitations of perceptrons

- Convergence: if the data isn't separable, the training algorithm may not terminate
- noise can cause this
- some simple functions are not separable (xor)
- Mediocre generation: the algorithm finds a solution that "barely" separates the data
- Overtraining: test/validation accuracy rises and then falls
 - Overtraining is a kind of overfitting



MPSCI 670

Overview

- ◆ Linear models
- Perceptron: model and learning algorithm combined as one
- Is there a better way to learn linear models?
- ◆ We will separate models and learning algorithms
 - Learning as optimization
 - Surrogate loss function
- model design

optimization

- Regularization
- Gradient descent
- Batch and online gradients
- Subgradient descent
- Support vector machines

CMPSCI 670

Subhransu Maji (UMASS)

Learning as optimization

$$\min_{\mathbf{w}} \sum_{n} \mathbf{1}[y_n \mathbf{w}^T \mathbf{x}_n < 0]$$
fewest mistakes

- ◆ The perceptron algorithm will find an optimal w if the data is separable
 - efficiency depends on the margin and norm of the data
- ◆ However, if the data is not separable, optimizing this is NP-hard
- ▶ i.e., there is no efficient way to minimize this unless P=NP

CMPSCI 670

Subhransu Maji (UMASS)

Learning as optimization

hyperparameter
$$\min_{\mathbf{w}} \sum_{n} \mathbf{1}[y_n \mathbf{w}^T \mathbf{x}_n < 0] + \lambda R(\mathbf{w})$$
 fewest mistakes simpler model

- In addition to minimizing training error, we want a simpler model
 - Remember our goal is to minimize generalization error
 - Recall the bias and variance tradeoff for learners
- ullet We can add a regularization term R(w) that prefers simpler models
- ▶ For example we may prefer decision trees of shallow depth
- \bullet Here λ is a hyperparameter of optimization problem

Learning as optimization

hyperparameter
$$\min_{\mathbf{w}} \sum_{n} \mathbf{1}[y_n \mathbf{w}^T \mathbf{x}_n < 0] + \lambda R(\mathbf{w})$$
 fewest mistakes simpler model

- ◆ The questions that remain are:
 - What are good ways to adjust the optimization problem so that there are efficient algorithms for solving it?
 - What are good regularizations $R(\mathbf{w})$ for hyperplanes?
 - Assuming that the optimization problem can be adjusted appropriately, what algorithms exist for solving the regularized optimization problem?

 CMPSCI 670
 Subhransu Maji (UMASS)
 11
 CMPSCI 670
 Subhransu Maji (UMASS)
 12

Convex surrogate loss functions

- ◆ Zero/one loss is hard to optimize
 - ▶ Small changes in **w** can cause large changes in the loss
- ◆ Surrogate loss: replace Zero/one loss by a smooth function
 - ▶ Easier to optimize if the surrogate loss is convex

9 9 7 6 6 5 4 3 2 2 -1.5 -1 -0.5 0 0.5 1 1.5	Hinge Logistic Exponential Squared Zero/one: Hinge: Logistic: Exponential:	$\frac{1 \hat{y} \leftarrow \mathbf{w}^T \mathbf{x}}{\ell^{(0/1)}(y, \hat{y}) = 1[y\hat{y} \le 0]}$ $\ell^{(\text{hin})}(y, \hat{y}) = \max\{0, 1 - y\hat{y}\}$ $\ell^{(\log)}(y, \hat{y}) = \frac{1}{\log 2} \log (1 + \exp[-y\hat{y}])$ $\ell^{(\exp)}(y, \hat{y}) = \exp[-y\hat{y}]$ $\ell^{(\operatorname{sqr})}(y, \hat{y}) = (y - \hat{y})^2$
CMPSCI 670	Subhransu Maji (UMASS)	13

Weight regularization

- ◆ What are good regularization functions *R*(*w*) for hyperplanes?
- ♦ We would like the weights —
- ▶ To be small
 - → Change in the features cause small change to the score
- → Robustness to noise
- ▶ To be sparse
 - Use as few features as possible
- → Similar to controlling the depth of a decision tree
- ◆ This is a form of inductive bias

Subhransu Maji (UMASS)

Weight regularization

- \bullet Just like the surrogate loss function, we would like R(w) to be convex
- ◆ Small weights regularization

$$R^{(\text{norm})}(\mathbf{w}) = \sqrt{\sum_{d} w_d^2}$$
 $R^{(\text{sqrd})}(\mathbf{w}) = \sum_{d} w_d^2$

$$R^{(\text{sqrd})}(\mathbf{w}) = \sum_{d} w_{d}^{2}$$

◆ Sparsity regularization

$$R^{(\text{count})}(\mathbf{w}) = \sum_{d} \mathbf{1}[|w_d| > 0]$$

not convex

◆ Family of "p-norm" regularization

$$R^{(\text{p-norm})}(\mathbf{w}) = \left(\sum_{d} |w_d|^p\right)^{1/p}$$

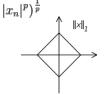
CMPSCI 670

Subhransu Maji (UMASS)

Contours of p-norms

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$

 $||x||_1 = \sum_{i=1}^n |x_i|$



convex for p > 1

$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

http://en.wikipedia.org/wiki/Lp_space

CMPSCI 670

Contours of p-norms

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$
 not convex for $0 \le p < 1$

$$p = \frac{2}{3}$$

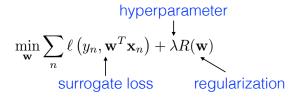
Counting non-zeros:

$$p=0$$

$$R^{(\mathrm{count})}(\mathbf{w}) = \sum_{d} \mathbf{1}[|w_d| > 0]$$

http://en.wikipedia.org/wiki/Lp_space CMPSCI 670 Subhransu Maji (UMASS)

General optimization framework



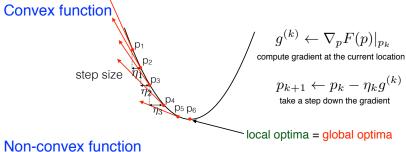
- ◆ Select a suitable:
 - convex surrogate loss
 - convex regularization
- Select the hyperparameter λ
- ◆ Minimize the regularized objective with respect to w
- ◆ This framework for optimization is called Tikhonov regularization or generally Structural Risk Minimization (SRM)

http://en.wikipedia.org/wiki/Tikhonov_regularization

CMPSCI 670

Subhransu Maji (UMASS)

Optimization by gradient descent



CMPSCI 670

Choice of step size

- ◆ The step size is important
 - ▶ too small: slow convergence
 - ▶ too large: no convergence
- A strategy is to use large step sizes initially and small step sizes later:

$$\eta_t \leftarrow \eta_0/(t_0+t)$$

- ◆ There are methods that converge faster by adapting step size to the curvature of the function
- ▶ Field of convex optimization

http://stanford.edu/~boyd/cvxbook/

Subhransu Maji (UMASS)

Good step size

Bad step size

Example: Exponential loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \exp(-y_n \mathbf{w}^T \mathbf{x}_n) + \frac{\lambda}{2} ||\mathbf{w}||^2$$
 objective

$$\frac{d\mathcal{L}}{d\mathbf{w}} = \sum_{n} -y_n \mathbf{x}_n \exp(-y_n \mathbf{w}^T \mathbf{x}_n) + \lambda \mathbf{w} \qquad \text{gradient}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\sum_n -y_n \mathbf{x}_n \exp(-y_n \mathbf{w}^T \mathbf{x}_n) + \lambda \mathbf{w} \right)$$
 update

loss term

$$\mathbf{w} \leftarrow \mathbf{w} + cy_n \mathbf{x}_n$$

high for misclassified points

similar to the perceptron update rule!

regularization term

$$\mathbf{w} \leftarrow (1 - \eta \lambda)\mathbf{w}$$

shrinks weights towards zero

CMPSCI 670

Subhransu Maji (UMASS)

Batch and online gradients

$$\mathcal{L}(\mathbf{w}) = \sum_n \mathcal{L}_n(\mathbf{w})$$
 objective

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{d\mathcal{L}}{d\mathbf{w}}$$
 gradient descent

batch gradient

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\sum_{n} \frac{d\mathcal{L}_{n}}{d\mathbf{w}} \right) \qquad \mathbf{w} \leftarrow \mathbf{w} - \eta \left(\frac{d\mathcal{L}_{n}}{d\mathbf{w}} \right)$$

sum of n gradients

update weight after you see all points

online gradient

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\frac{d\mathcal{L}_n}{d\mathbf{w}} \right)$$

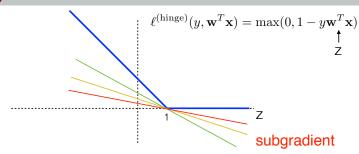
gradient at nth point

update weights after you see each point

Online gradients are the default method for multi-layer perceptrons

Subhransu Maji (UMASS)

Subgradient



- ◆ The hinge loss is not differentiable at z=1
- ◆ Subgradient is any direction that is below the function
- For the hinge loss a possible subgradient is:

$$\frac{d\ell^{\text{hinge}}}{d\mathbf{w}} = \begin{cases} 0 & \text{if } y\mathbf{w}^T\mathbf{x} > 1\\ -y\mathbf{x} & \text{otherwise} \end{cases}$$

Example: Hinge loss

$$\mathcal{L}(\mathbf{w}) = \sum_n \max(0, 1 - y_n \mathbf{w}^T \mathbf{x}_n) + \frac{\lambda}{2} ||\mathbf{w}||^2$$
 objective

$$\frac{d\mathcal{L}}{d\mathbf{w}} = \sum_{n} -\mathbf{1}[y_n \mathbf{w}^T \mathbf{x}_n \le 1] y_n \mathbf{x}_n + \lambda \mathbf{w} \quad \text{subgradient}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\sum_n -\mathbf{1}[y_n \mathbf{w}^T \mathbf{x}_n \leq 1] y_n \mathbf{x}_n + \lambda \mathbf{w} \right) \quad \text{update}$$

loss term

$$\mathbf{w} \leftarrow \mathbf{w} + \eta y_n \mathbf{x}_n$$
only for points $u_n \mathbf{w}^T \mathbf{x}_n < 1$

perceptron update $y_n \mathbf{w}^T \mathbf{x}_n \leq 0$

regularization term

$$\mathbf{w} \leftarrow (1 - \eta \lambda)\mathbf{w}$$

shrinks weights towards zero

Subhransu Maji (UMASS)

CMPSCI 670

Example: Squared loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \left(y_{n} - \mathbf{w}^{T} \mathbf{x}_{n}\right)^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2} \quad \text{objective}$$

$$\boxed{\begin{array}{c} x_{1,1} & x_{1,2} & \dots & x_{1,D} \\ x_{2,1} & x_{2,2} & \dots & x_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \dots & x_{N,D} \end{array}} \underbrace{\begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{D} \end{bmatrix}}_{\mathbf{w}} = \underbrace{\begin{bmatrix} \sum_{d} x_{1,d} w_{d} \\ \sum_{d} x_{2,d} w_{d} \\ \vdots \\ \sum_{d} x_{N,d} w_{d} \end{bmatrix}}_{\hat{\mathbf{y}}} \approx \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix}}_{\hat{\mathbf{y}}}$$

$$\boxed{\mathbf{equivalent loss}}$$

$$\underline{\mathbf{min}}_{\mathbf{w}} \quad \mathcal{L}(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{Y}||^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

CMPSCI 670

Subhransu Maji (UMASS)

Example: Squared loss

$$\min_{oldsymbol{w}} \ \mathcal{L}(oldsymbol{w}) = rac{1}{2} \left| \left| oldsymbol{X} oldsymbol{w} - oldsymbol{Y}
ight|
ight|^2 + rac{\lambda}{2} \left| \left| oldsymbol{w}
ight|
ight|^2 \quad ext{ objective}$$

$$egin{aligned}
abla_{m{w}} \mathcal{L}(m{w}) &= m{X}^ op (m{X}m{w} - m{Y}) + \lambda m{w} \ &= m{X}^ op m{X}m{w} - m{X}^ op m{Y} + \lambda m{w} \ &= m{\left(m{X}^ op m{X} + \lambda m{I}
ight)} m{w} - m{X}^ op m{Y} \end{aligned}$$
 gradient

At optima the gradient=0

$$(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}) \boldsymbol{w} - \mathbf{X}^{\top}\mathbf{Y} = 0$$

$$\iff (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{D}) \boldsymbol{w} = \mathbf{X}^{\top}\mathbf{Y}$$

$$\iff \boldsymbol{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{D})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

exact closed-form solution

CMPSCI 670

Subhransu Maji (UMASS)

26

Matrix inversion vs. gradient descent

- ◆ Assume, we have D features and N points
- ◆ Overall time via matrix inversion
 - The closed form solution involves computing:

$$\boldsymbol{w} = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{D}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

- ► Total time is O(D²N + D³ + DN), assuming O(D³) matrix inversion
- If N > D, then total time is O(D²N)
- ◆ Overall time via gradient descent
- Gradient: $\frac{d\mathcal{L}}{d\mathbf{w}} = \sum_{n} -2(y_n \mathbf{w}^T \mathbf{x}_n) \mathbf{x}_n + \lambda \mathbf{w}$
- ▶ Each iteration: O(ND); T iterations: O(TND)
- Which one is faster?
 - ▶ Small problems D < 100: probably faster to run matrix inversion
- ▶ Large problems D > 10,000: probably faster to run gradient descent

Optimization for linear models

- ◆ Under suitable conditions*, provided you pick the step sizes appropriately, the convergence rate of gradient descent is O(1/N)
- i.e., if you want a solution within 0.0001 of the optimal you have to run the gradient descent for N=1000 iterations.
- ◆ For linear models (hinge/logistic/exponential loss) and squared-norm regularization there are off-the-shelf solvers that are fast in practice: SVMperf, LIBLINEAR, PEGASOS
- ▶ SVMperf , LIBLINEAR use a different optimization method

* the function is strongly convex: $f(y) \ge f(x) + \nabla f(x)^T (y-x) + \frac{m}{2} \|y-x\|_2^2$ APSCI 670 Subhransu Maji (UMASS)

CMPSCI 670 Subhransu Maji (UMASS)

Feature normalization

- Even if a feature is useful some normalization may be good
- ◆ Per-feature normalization
- Centering

$$x_{n,d} \leftarrow x_{n,d} - \mu_d$$

$$x_{n,d} \leftarrow x_{n,d}/\sigma_d$$

• Absolute scaling $x_{n,d} \leftarrow x_{n,d}/r_d$

$$\begin{array}{ll} \text{ Centering } & x_{n,d} \leftarrow x_{n,d} - \mu_d \\ \text{ Variance scaling } & x_{n,d} \leftarrow x_{n,d}/\sigma_d \\ \text{ Absolute scaling } & x_{n,d} \leftarrow x_{n,d}/\sigma_d \\ \end{array} \quad \begin{array}{ll} \mu_d = \frac{1}{N} \sum_n x_{n,d} \\ \sigma_d = \sqrt{\frac{1}{N} \sum_n (x_{n,d} - \mu_d)^2} \\ r_d = \max_n |x_{n,d}| \end{array}$$

- Non-linear transformation
- → square-root

$$x_{n,d} \leftarrow \sqrt{x_{n,d}}$$

(corrects for burstiness)

Caltech-101 image classification

41.6% linear 63.8% square-root

- ◆ Per-example normalization
- fixed norm for each example $||\mathbf{x}|| = 1$

CMPSCI 689

Subhransu Maji (UMASS)

CMPSCI 670

Slides credit

- ◆ Figures of various "p-norms" are from Wikipedia
 - http://en.wikipedia.org/wiki/Lp_space
- ◆ Some of the slides are based on CIML book by Hal Daume III

Appendix: code for surrogateLoss Logistic Output % Code to plot various loss functions % Code to plot various loss functions
y1=1;
y2=linspace(-2,3,500);
zeroOneLoss = y1*y2 <=0;
hingeLoss = max(0, 1-y1*y2);
logisticLoss = log(1+exp(-y1*y2))/log(2);
overlose = avv(-y1*y2).</pre> expLoss = exp(-y1*y2); squaredLoss = (y1-y2).^2; % Plot them
figure(1); clf; hold on;
plot(y2, zeroOneLoss,'k-','LineWidth',1);
plot(y2, hingeLoss,'b-','LineWidth',1);
plot(y2, logisticLoss,'r-','LineWidth',1);
plot(y2, expLoss,'g-','LineWidth',1);
plot(y2, squaredLoss,'m-','LineWidth',1);
plot(y2, squaredLoss,'m-','LineWidth',1);
ylabel('Prediction', FontSize',16);
xlabel('Loss','FontSize',16);
legend({'Zero/One', 'Hinge', 'Logistic', 'Exponential', 'Squared'}, 'Location',k'
'NorthEast', 'FontSize',16);
box on; Matlab code CMPSCI 670 Subhransu Maji (UMASS)