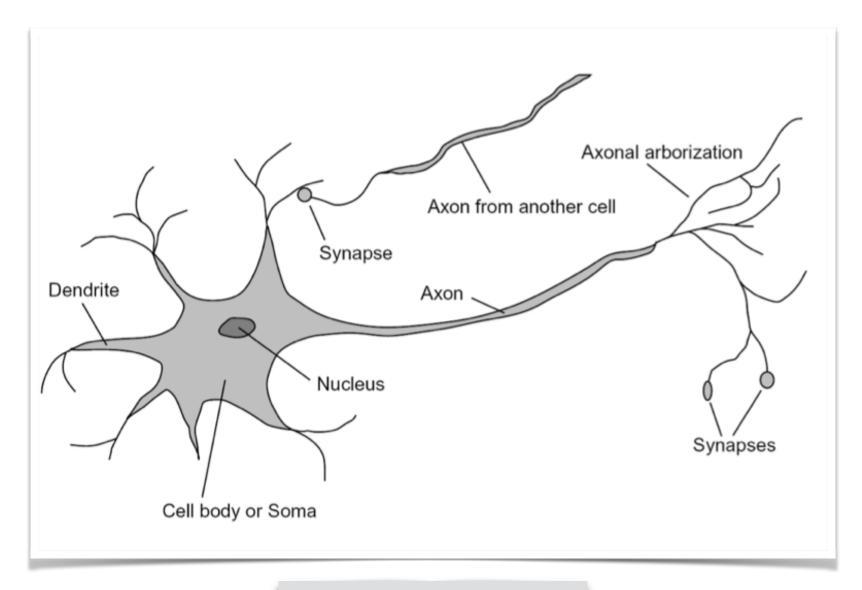
Linear models

Subhransu Maji

CMPSCI 670: Computer Vision

November 3, 2016

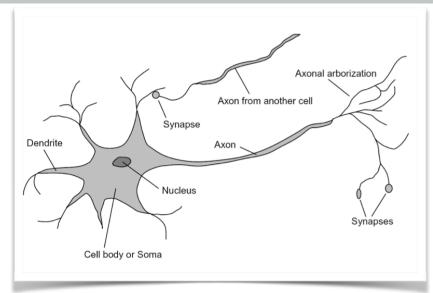
A neuron (or how our brains work)



Neuroscience 101

Perceptron

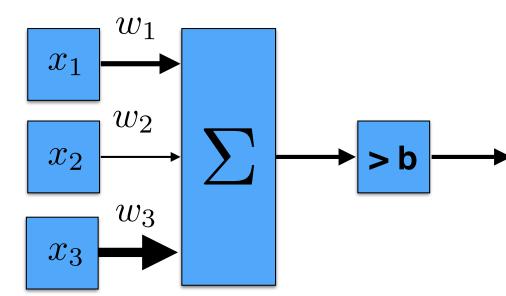
- Input are feature values
- ◆ Each feature has a weight
- Sum in the activation



$$\operatorname{activation}(\mathbf{w}, \mathbf{x}) = \sum_{i} w_{i} x_{i} = \mathbf{w}^{T} \mathbf{x}$$

- ◆ If the activation is:
 - > b, output *class 1*
 - otherwise, output class 2

$$\mathbf{x} o (\mathbf{x}, 1)$$
 $\mathbf{w}^T \mathbf{x} + b o (\mathbf{w}, b)^T (\mathbf{x}, 1)$



Example: Spam

- ◆ Imagine 3 features (spam is "positive" class):
 - free (number of occurrences of "free")
 - money (number of occurrences of "money")
 - BIAS (intercept, always has value 1)

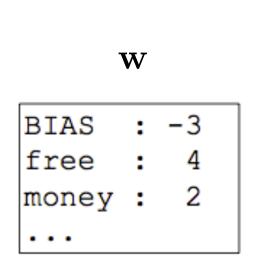
```
email \mathbf{x} \mathbf{w} \mathbf{w}^T \mathbf{x}

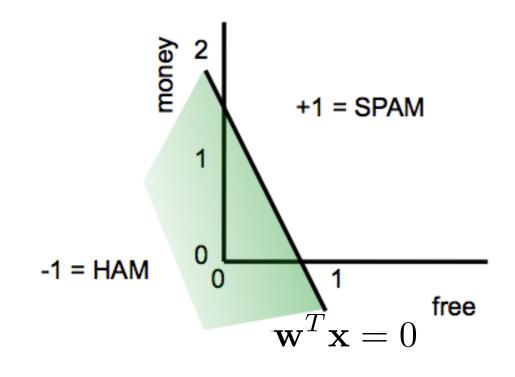
"free money" \begin{bmatrix} \text{BIAS} & : & 1 \\ \text{free} & : & 1 \\ \text{money} & : & 1 \end{bmatrix} \begin{bmatrix} \text{BIAS} & : & -3 \\ \text{free} & : & 4 \\ \text{money} & : & 2 \end{bmatrix} \begin{bmatrix} (1)(-3) & + \\ (1)(4) & + \\ (1)(2) & + \\ \dots & = 3 \end{bmatrix}
```

 $\mathbf{w}^T \mathbf{x} > 0 \to \text{SPAM!!}$

Geometry of the perceptron

- In the space of feature vectors
 - examples are points (in D dimensions)
 - an weight vector is a hyperplane (a D-1 dimensional object)
 - One side corresponds to y=+1
 - Other side corresponds to y=-1
- Perceptrons are also called as linear classifiers





Learning a perceptron

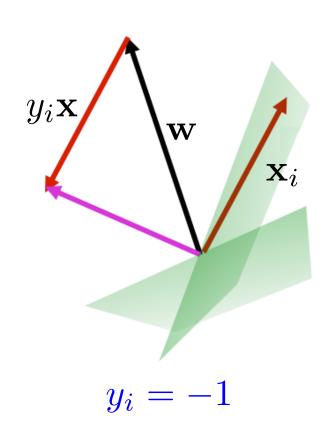
Input: training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Perceptron training algorithm [Rosenblatt 57]

- lacktriangle Initialize $\mathbf{w} \leftarrow [0, \dots, 0]$
- ♦ for iter = 1,...,T
 - ▶ for i = 1,..,n
 - predict according to the current model

$$\hat{y}_i = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x}_i > 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_i \le 0 \end{cases}$$

- ullet if $y_i=\hat{y}_i$, no change
- else, $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$



error driven, online, activations increase for +, randomize

Properties of perceptrons

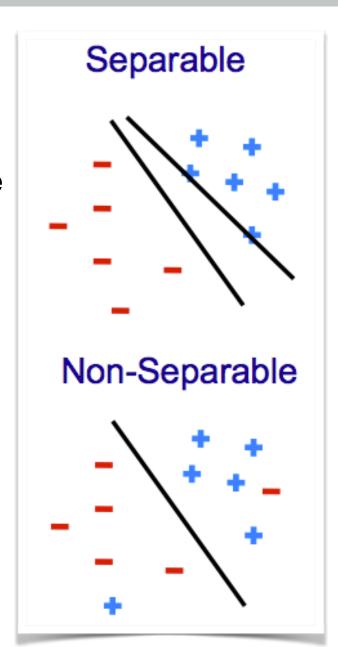
- Separability: some parameters will classify the training data perfectly
- ◆ Convergence: if the training data is separable then the perceptron training will eventually converge [Block 62, Novikoff 62]
- Mistake bound: the maximum number of mistakes is related to the margin

assuming,
$$||\mathbf{x}_i|| \leq 1$$

#mistakes
$$<\frac{1}{\delta^2}$$

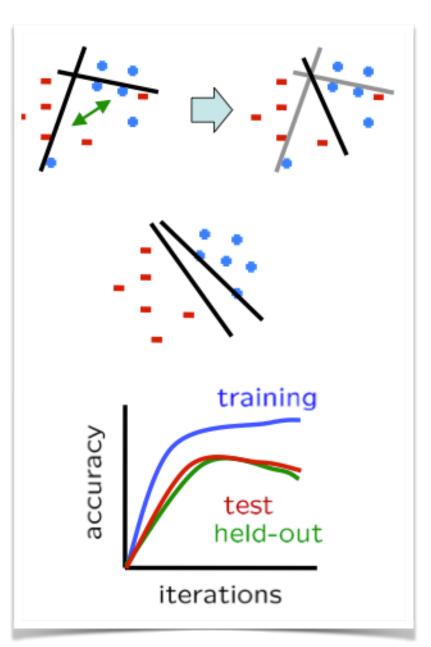
$$\delta = \max_{\mathbf{w}} \min_{(\mathbf{x}_i, y_i)} \left[y_i \mathbf{w}^T \mathbf{x}_i \right]$$

such that, $||\mathbf{w}|| = 1$



Limitations of perceptrons

- ◆ Convergence: if the data isn't separable, the training algorithm may not terminate
 - noise can cause this
 - some simple functions are not separable (xor)
- ◆ Mediocre generation: the algorithm finds a solution that "barely" separates the data
- Overtraining: test/validation accuracy rises and then falls
 - Overtraining is a kind of overfitting



Overview

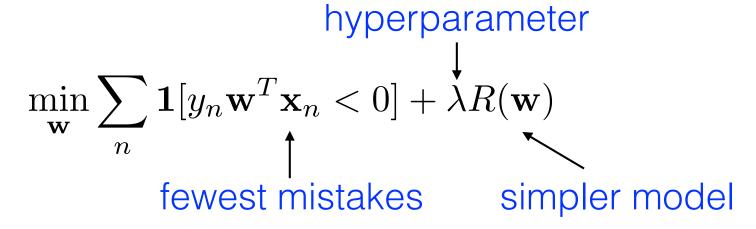
- Linear models
 - Perceptron: model and learning algorithm combined as one
 - Is there a better way to learn linear models?
- ♦ We will separate models and learning algorithms
 - Learning as optimization)
 - Surrogate loss functionmodel design
 - Regularization
 - Gradient descent
 - ▶ Batch and online gradients optimization
 - Subgradient descent
 - Support vector machines

Learning as optimization

$$\min_{\mathbf{w}} \sum_{n} \mathbf{1}[y_n \mathbf{w}^T \mathbf{x}_n < 0]$$
fewest mistakes

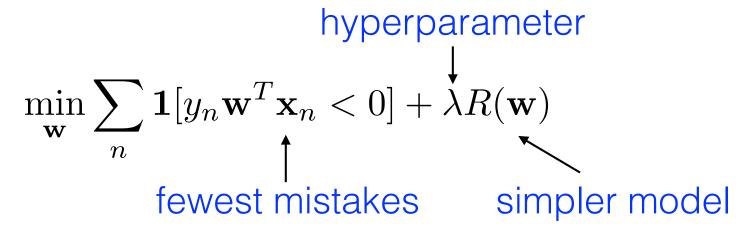
- ◆ The perceptron algorithm will find an optimal w if the data is separable
 - efficiency depends on the margin and norm of the data
- ◆ However, if the data is not separable, optimizing this is NP-hard
 - ▶ i.e., there is no efficient way to minimize this unless P=NP

Learning as optimization



- ◆ In addition to minimizing training error, we want a simpler model
 - Remember our goal is to minimize generalization error
 - Recall the bias and variance tradeoff for learners
- We can add a regularization term $R(\mathbf{w})$ that prefers simpler models
 - For example we may prefer decision trees of shallow depth
- Here λ is a hyperparameter of optimization problem

Learning as optimization

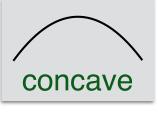


◆ The questions that remain are:

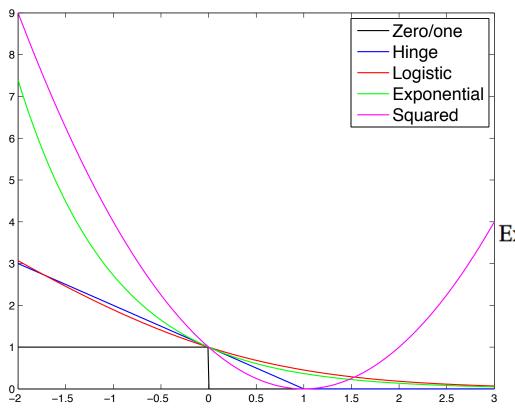
- What are good ways to adjust the optimization problem so that there are efficient algorithms for solving it?
- What are good regularizations $R(\mathbf{w})$ for hyperplanes?
- Assuming that the optimization problem can be adjusted appropriately, what algorithms exist for solving the regularized optimization problem?

Convex surrogate loss functions

- ◆ Zero/one loss is hard to optimize
 - Small changes in w can cause large changes in the loss



Examples:



$$y = +1 \quad \hat{y} \leftarrow \mathbf{w}^T \mathbf{x}$$

Zero/one:
$$\ell^{(0/1)}(y, \hat{y}) = \mathbf{1}[y\hat{y} \le 0]$$

Hinge:
$$\ell^{\text{(hin)}}(y, \hat{y}) = \max\{0, 1 - y\hat{y}\}$$

Logistic:
$$\ell^{(\log)}(y, \hat{y}) = \frac{1}{\log 2} \log (1 + \exp[-y\hat{y}])$$

Exponential:
$$\ell^{(\exp)}(y, \hat{y}) = \exp[-y\hat{y}]$$

Squared:
$$\ell^{(sqr)}(y, \hat{y}) = (y - \hat{y})^2$$

Weight regularization

- What are good regularization functions $R(\mathbf{w})$ for hyperplanes?
- ♦ We would like the weights
 - ▶ To be small
 - Change in the features cause small change to the score
 - → Robustness to noise
 - ▶ To be sparse
 - Use as few features as possible
 - Similar to controlling the depth of a decision tree
- ◆ This is a form of inductive bias

Weight regularization

- \bullet Just like the surrogate loss function, we would like R(w) to be convex
- Small weights regularization

$$R^{(\text{norm})}(\mathbf{w}) = \sqrt{\sum_{d} w_d^2}$$

$$R^{(\text{sqrd})}(\mathbf{w}) = \sum_{d} w_d^2$$

Sparsity regularization

$$R^{(\text{count})}(\mathbf{w}) = \sum_{d} \mathbf{1}[|w_d| > 0]$$

not convex

◆ Family of "p-norm" regularization

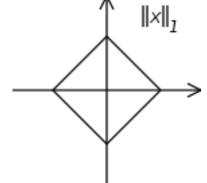
$$R^{(\text{p-norm})}(\mathbf{w}) = \left(\sum_{d} |w_d|^p\right)^{1/p}$$

Contours of p-norms

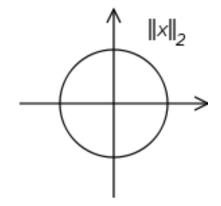
$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$

convex for $p \ge 1$

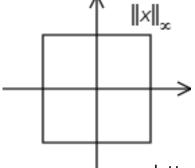
$$||x||_1 = \sum_{i=1}^n |x_i|$$



$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$



$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$



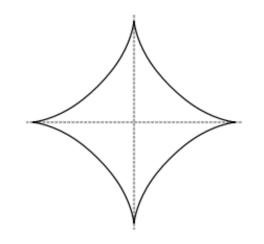
http://en.wikipedia.org/wiki/Lp_space

Contours of p-norms

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$

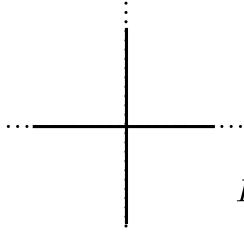
not convex for $0 \le p < 1$

$$p = \frac{2}{3}$$



Counting non-zeros:

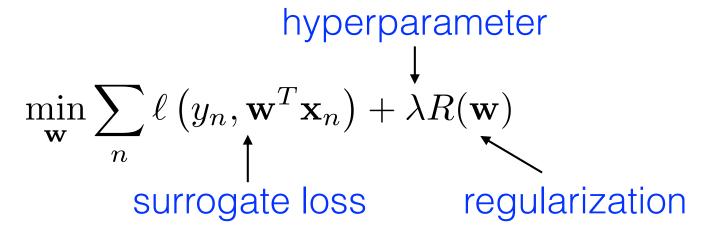
$$p = 0$$



$$R^{(\text{count})}(\mathbf{w}) = \sum_{d} \mathbf{1}[|w_d| > 0]$$

http://en.wikipedia.org/wiki/Lp_space

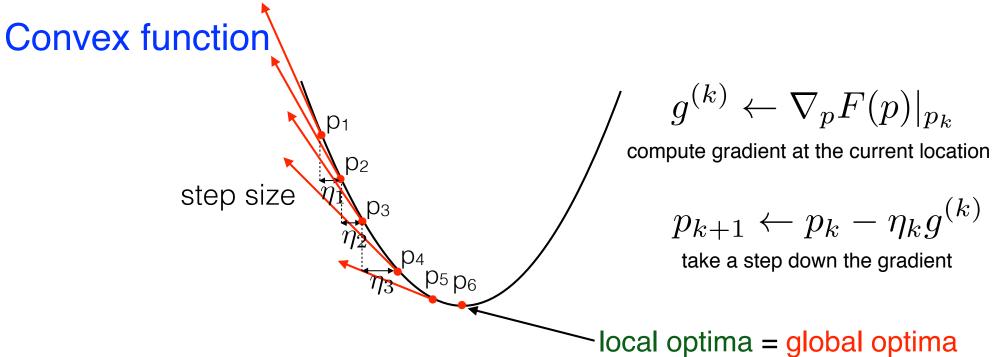
General optimization framework



- ◆ Select a suitable:
 - convex surrogate loss
 - convex regularization
- Select the hyperparameter λ
- Minimize the regularized objective with respect to w
- This framework for optimization is called Tikhonov regularization or generally Structural Risk Minimization (SRM)

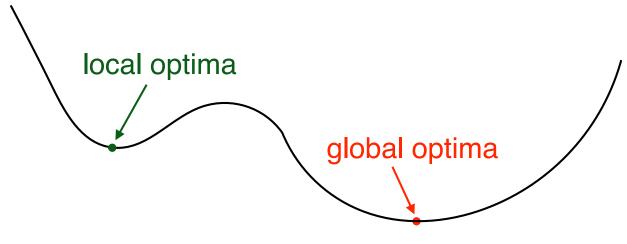
http://en.wikipedia.org/wiki/Tikhonov_regularization

Optimization by gradient descent



Non-convex function

CMPSCI 670

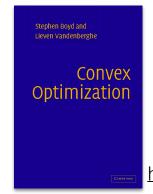


Choice of step size

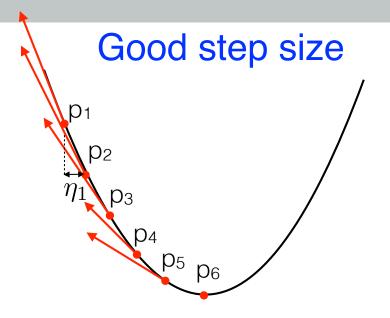
- ◆ The step size is important
 - too small: slow convergence
 - too large: no convergence
- A strategy is to use large step sizes initially and small step sizes later:

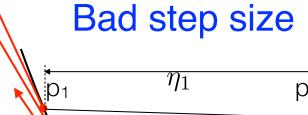
$$\eta_t \leftarrow \eta_0/(t_0+t)$$

- ◆ There are methods that converge faster by adapting step size to the curvature of the function
 - Field of convex optimization



http://stanford.edu/~boyd/cvxbook/





Example: Exponential loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \exp(-y_n \mathbf{w}^T \mathbf{x}_n) + \frac{\lambda}{2} ||\mathbf{w}||^2$$
 objective

$$\frac{d\mathcal{L}}{d\mathbf{w}} = \sum -y_n \mathbf{x}_n \exp(-y_n \mathbf{w}^T \mathbf{x}_n) + \lambda \mathbf{w} \qquad \text{gradient}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\sum_{n} -y_n \mathbf{x}_n \exp(-y_n \mathbf{w}^T \mathbf{x}_n) + \lambda \mathbf{w} \right)$$
 update

loss term

$$\mathbf{w} \leftarrow \mathbf{w} + cy_n \mathbf{x}_n$$

high for misclassified points

similar to the perceptron update rule!

regularization term

$$\mathbf{w} \leftarrow (1 - \eta \lambda) \mathbf{w}$$

shrinks weights towards zero

Batch and online gradients

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \mathcal{L}_n(\mathbf{w})$$
 objective

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{d\mathcal{L}}{d\mathbf{w}} \quad \text{gradient descent}$$

batch gradient

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\sum_{n} \frac{d\mathcal{L}_n}{d\mathbf{w}} \right)$$

sum of n gradients

update weight after you see all points

online gradient

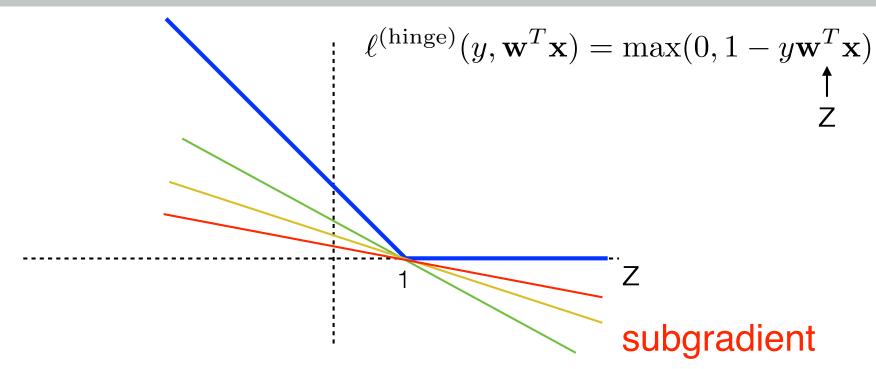
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\frac{d\mathcal{L}_n}{d\mathbf{w}} \right)$$

gradient at nth point

update weights after you see each point

Online gradients are the default method for multi-layer perceptrons

Subgradient



- ◆ The hinge loss is not differentiable at z=1
- Subgradient is any direction that is below the function
- ◆ For the hinge loss a possible subgradient is:

$$\frac{d\ell^{\text{hinge}}}{d\mathbf{w}} = \begin{cases} 0 & \text{if } y\mathbf{w}^T\mathbf{x} > 1\\ -y\mathbf{x} & \text{otherwise} \end{cases}$$

Example: Hinge loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \max(0, 1 - y_n \mathbf{w}^T \mathbf{x}_n) + \frac{\lambda}{2} ||\mathbf{w}||^2$$
 objective

$$\frac{d\mathcal{L}}{d\mathbf{w}} = \sum -\mathbf{1}[y_n \mathbf{w}^T \mathbf{x}_n \le 1] y_n \mathbf{x}_n + \lambda \mathbf{w} \quad \text{subgradient}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\sum_n -\mathbf{1} [y_n \mathbf{w}^T \mathbf{x}_n \leq 1] y_n \mathbf{x}_n + \lambda \mathbf{w} \right) \quad \text{update}$$

loss term

$$\mathbf{w} \leftarrow \mathbf{w} + \eta y_n \mathbf{x}_n$$

only for points $y_n \mathbf{w}^T \mathbf{x}_n \leq 1$

perceptron update $y_n \mathbf{w}^T \mathbf{x}_n \leq 0$

regularization term

$$\mathbf{w} \leftarrow (1 - \eta \lambda) \mathbf{w}$$

shrinks weights towards zero

Example: Squared loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \left(y_{n} - \mathbf{w}^{T} \mathbf{x}_{n}\right)^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2} \quad \text{objective}$$

$$\downarrow \text{matrix notation}$$

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,D} \\ x_{2,1} & x_{2,2} & \dots & x_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \dots & x_{N,D} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{D} \end{bmatrix} = \begin{bmatrix} \sum_{d} x_{1,d} w_{d} \\ \sum_{d} x_{2,d} w_{d} \\ \vdots \\ \sum_{d} x_{N,d} w_{d} \end{bmatrix} \approx \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix}}_{\hat{\mathbf{Y}}}$$

$$\downarrow \text{equivalent loss}$$

$$\min_{\mathbf{w}} \quad \mathcal{L}(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{Y}||^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

Example: Squared loss

$$\min_{\boldsymbol{w}} \ \mathcal{L}(\boldsymbol{w}) = \frac{1}{2} \left| \left| \mathbf{X} \boldsymbol{w} - \mathbf{Y} \right| \right|^2 + \frac{\lambda}{2} \left| \left| \boldsymbol{w} \right| \right|^2$$
 objective

$$\nabla_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}) = \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{w} - \mathbf{Y}) + \lambda \boldsymbol{w}$$
$$= \mathbf{X}^{\top} \mathbf{X} \boldsymbol{w} - \mathbf{X}^{\top} \mathbf{Y} + \lambda \boldsymbol{w}$$
$$= (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}) \boldsymbol{w} - \mathbf{X}^{\top} \mathbf{Y}$$

gradient

At optima the gradient=0

$$\begin{pmatrix} \mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \end{pmatrix} \boldsymbol{w} - \mathbf{X}^{\top}\mathbf{Y} = 0$$

$$\iff (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{D}) \boldsymbol{w} = \mathbf{X}^{\top}\mathbf{Y}$$

$$\iff \boldsymbol{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{D})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

exact closed-form solution

Matrix inversion vs. gradient descent

- ◆ Assume, we have D features and N points
- ◆ Overall time via matrix inversion
 - The closed form solution involves computing:

$$\boldsymbol{w} = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{D}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

- ▶ Total time is $O(D^2N + D^3 + DN)$, assuming $O(D^3)$ matrix inversion
- If N > D, then total time is $O(D^2N)$
- ◆ Overall time via gradient descent
 - Gradient: $\frac{d\mathcal{L}}{d\mathbf{w}} = \sum_{n} -2(y_n \mathbf{w}^T \mathbf{x}_n) \mathbf{x}_n + \lambda \mathbf{w}$
 - Each iteration: O(ND); T iterations: O(TND)
- Which one is faster?
 - Small problems D < 100: probably faster to run matrix inversion
 - Large problems D > 10,000: probably faster to run gradient descent

Optimization for linear models

- Under suitable conditions*, provided you pick the step sizes appropriately, the convergence rate of gradient descent is O(1/N)
 - ▶ i.e., if you want a solution within 0.0001 of the optimal you have to run the gradient descent for N=1000 iterations.
- For linear models (hinge/logistic/exponential loss) and squared-norm regularization there are off-the-shelf solvers that are fast in practice: SVMperf, LIBLINEAR, PEGASOS
 - SVMperf, LIBLINEAR use a different optimization method

* the function is strongly convex:
$$f(y) \ge f(x) + \nabla f(x)^T (y-x) + \frac{m}{2} ||y-x||_2^2$$

Feature normalization

- Even if a feature is useful some normalization may be good
- ◆ Per-feature normalization
 - Centering

$$x_{n,d} \leftarrow x_{n,d} - \mu_d$$

Variance scaling

$$x_{n,d} \leftarrow x_{n,d}/\sigma_d$$

Absolute scaling

$$x_{n,d} \leftarrow x_{n,d}/r_d$$

$$\mu_d = \frac{1}{N} \sum_{n} x_{n,d}$$

$$\sigma_d = \sqrt{\frac{1}{N} \sum_{n} (x_{n,d} - \mu_d)^2}$$

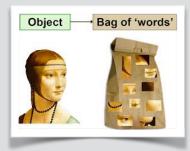
$$r_d = \max_{n} |x_{n,d}|$$

- Non-linear transformation
 - → square-root

$$x_{n,d} \leftarrow \sqrt{x_{n,d}}$$

(corrects for burstiness)

Caltech-101 image classification



41.6% linear 63.8% square-root

- ◆ Per-example normalization
 - fixed norm for each example $||\mathbf{x}|| = 1$

Slides credit

- ◆ Figures of various "p-norms" are from Wikipedia
 - http://en.wikipedia.org/wiki/Lp_space
- ◆ Some of the slides are based on CIML book by Hal Daume III

Appendix: code for surrogateLoss

Zero/one Hinge Logistic Exponential Squared Prediction Output % Code to plot various loss functions v1=1: y2=linspace(-2,3,500);zeroOneLoss = y1*y2 <=0; Loss hingeLoss = max(0, 1-y1*y2);logisticLoss = log(1+exp(-y1*y2))/log(2);expLoss = exp(-y1*y2); $squaredLoss = (y1-y2).^2;$ % Plot them figure(1); clf; hold on; Matlab code plot(y2, zeroOneLoss,'k-','LineWidth',1); plot(y2, hingeLoss,'b-','LineWidth',1); plot(y2, logisticLoss,'r-','LineWidth',1); plot(y2, expLoss,'g-','LineWidth',1); plot(y2, squaredLoss,'m-','LineWidth',1); ylabel('Prediction','FontSize',16); xlabel('Loss','FontSize',16); legend({'Zero/one', 'Hinge', 'Logistic', 'Exponential', 'Squared'}, 'Location', Location', Location 'NorthEast', 'FontSize', 16); box on;