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Perceptron

¢ Input are feature values
+ Each feature has a weight
¢ Sum in the activation

Axonal arborization

\ Axon from another cell
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actlvatlon W X E W;T; = wlx

¢ If the activation is:
» > b, output class 1
» otherwise, output class 2

x — (x,1)
wlix+b— (w,b)!(x,1)
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Example: Spam

+ Imagine 3 features (spam is “positive” class):
» free (number of occurrences of “free”)
» money (number of occurrences of “money”)
» BIAS (intercept, always has value 1)

' T
emall X A" W' X
BIAS : 1 BIAS : -3 (1)(=3) +
B ” free : 1 free : 4 (1)(4) +
free money money : 1 money : 2 LR+
=3

wlix >0 — SPAM!
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Geometry of the perceptron

¢ In the space of feature vectors
» examples are points (in D dimensions)
» an weight vector is a hyperplane (a D-1 dimensional object)
» One side corresponds to y=+1
» Other side corresponds to y=-1
¢ Perceptrons are also called as linear classifiers

W
BIAS : -3
free : 4
money : 2
-1 = HAM
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Learning a perceptron

Input: training data (x1,y1), (X2,%2), - - -, (Xn, Yn)

Perceptron training algorithm [Rosenblatt 57
o Initialize w < [0, ..., 0]
o foriter=1,...,T
»fori=1,..,n
e predict according to the current model

N +1 if WTXi > ()
=1 —1 if wlix; <0
e if Y; = ¥;, no change
e else, w +— W + y;X;

error driven, online, activations increase for +, randomize
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Properties of perceptrons

¢ Separability: some parameters will classify Separable
the training data perfectly

¢ Convergence: if the training data is separable
then the perceptron training will eventually -
converge [Block 62, Novikoff 62] -

+ Mistake bound: the maximum number of
mistakes is related to the margin

assuming, ||x;|| <1

#mistakes < 5%

0 = MaXy MiN(x, 4. [inTXi]

such that, ||w|| =1
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Limitations of perceptrons

+ Convergence: if the data isn’t separable,
the training algorithm may not terminate

» NOISe can cause this

» some simple functions are not
separable (xor)

+ Mediocre generation: the algorithm
finds a solution that “barely” separates

the data
training
+ Overtraining: test/validation accuracy >
rises and then falls §
» Qvertraining is a kind of overfitting § htszt_out
iterations

| —
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Overview

¢ Linear models
» Perceptron: model and learning algorithm combined as one
» |s there a better way to learn linear models?

+ We will separate models and learning algorithms
» Learning as optimization

Surrogate loss function model design

Regularization

Gradient descent

Batch and online gradients ¢ optimization

Subgradient descent

Support vector machines

v

v

v

v

v

v
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Learning as optimization

min Z 1y, w'x, < 0]

T

fewest mistakes

¢ The perceptron algorithm will find an optimal w if the data is separable
» efficiency depends on the margin and norm of the data

+ However, if the data is not separable, optimizing this is NP-hard
» 1.e., there is no efficient way to minimize this unless P=NP
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Learning as optimization

hyperparameter

min Z 1y, w’ x, < 0]+ iR(W)

fewest mistakes simpler model

¢ In addition to minimizing training error, we want a simpler model
» Remember our goal is to minimize generalization error
» Recall the bias and variance tradeoff for learners

¢ We can add a regularization term R(w) that prefers simpler models
» For example we may prefer decision trees of shallow depth

+ Here A is a hyperparameter of optimization problem
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Learning as optimization

hyperparameter

min Z 1y, w’ x, < 0]+ iR(W)

fewest mistakes simpler model

¢ The questions that remain are:

» What are good ways to adjust the optimization problem so that
there are efficient algorithms for solving it”

» What are good regularizations R(w) for hyperplanes?

» Assuming that the optimization problem can be adjusted
appropriately, what algorithms exist for solving the regularized
optimization problem?
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Convex surrogate loss functions

¢ Zero/one loss is hard to optimize /\
» Small changes in w can cause large changes in the loss ~ concave

¢ Surrogate loss: replace Zero/one loss by a smooth function

» Easier to optimize if the surrogate loss is convex \/
¢ Examples: convex
i | | | — Zerolone Yy = +1 :& — WTX
8l —Hinge -
— Logisti
) E?(?Enlgntial | Zero/one: £9V(y,9) =1[yg < 0]
— Squared ) ) (hin) AN A
Al , Hinge: £""(y,9) = max{0,1—y7}
1
| , istic:  ¢(09) S -
Logistic: ~ £"9(y,79) logzlog (1+exp[—y7])
Exponential:  £?(y,9) = exp[-yJ]
Squared: £V (y,9) = (y —9)°

1 1 1 Il Il Il I
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
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Weight regularization

+ What are good regularization functions R(w) for hyperplanes?
+ We would like the weights —
» To be small —
= Change in the features cause small change to the score
= Robustness to noise
» To be sparse —
= Use as few features as possible
= Similar to controlling the depth of a decision tree
¢ This is a form of inductive bias
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Weight regularization

¢ Just like the surrogate loss function, we would like R(w) to be convex
+ Small weights regularization

R(norm) \/Z wd R(sqrd) Z wd

¢ Sparsity regularization

R(count) (v Z 1[|wg| > 0] not convex

¢ Family of “p-norm” regularlzatlon

1/p
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Contours of p-norms

Izl = (21 + |22l + - - - + |2alP)? A convex for p > 1
I,
mn
el = 3 o AN
= N

(1N
N

n
|zll2 = | >_ |:l?
\-i:l

2]l = max |z >

hitp://en.wikipedia.org/wiki/Lp_space
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Contours of p-norms

1
|||, = (|z1|" + |xo|” + -+ - + |2a]")? not convex for 0 < p <1

Q| BN

Counting non-zeros:

p=20

R(count)(w) _ Z 1[|wg| > 0]
d

hitp://en.wikipedia.org/wiki/Lp space
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General optimization framework

hyperparameter

l
m“i’n Z C(Yn, W' xp,) + AR(W)

surrogate loss regularization

¢ Select a suitable:
» convex surrogate loss
» convex regularization
¢ Select the hyperparameter A
+ Minimize the regularized objective with respect to w

+ This framework for optimization is called Tikhonov regularization or
generally Structural Risk Minimization (SRM)

http://en.wikipedia.org/wiki/Tikhonov_regularization
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Optimization by gradient descent

Convex function

g(k) — V. F'(p)|p,

compute gradient at the current location

Pk+1 < Pk — ng(k)

take a step down the gradient

\Iocal optima = global optima

step size |

Non-convex function

local optima

/

global optima

\
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Choice of step size

¢ The step size is important —
» too small: slow convergence
» too large: no convergence

¢ A strategy is to use large step sizes initially
and small step sizes later:

Nt < o/ (to +t)

Good step size

+ There are methods that converge faster by
adapting step size to the curvature of the
function

» Field of convex optimization

convex
Optimization

B http://stanford.edu/~boyd/cvxbook
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Example: Exponential loss

A
L(w) = Zexp (—ynwW!x,) + §HWH2 objective

— = Z —YnXp €XP(—Yn W Xn) + AW gradient

W< W-—1 (Z —YnXn exp(—yn W' X)) + )\W) update

loss term regularization term
W — W + cypXy, w <+ (1 —npAw
high for misclassified points shrinks weights towards zero

similar to the perceptron update rule!
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Batch and online gradients
L(w) =) Ln(w) objective

dL .
W <— wW — nn—— gradient descent
dw
batch gradient online gradient
w W dLl,, dL,
{ - dw W W dw
sum of n gradients gradient at nth point

update weight after you see all points  update weights after you see each point

Online gradients are the default method for multi-layer perceptrons
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Subgradient

¢hinge) (y wl'x) = max(0,1 — yw’ x)

f
Z

Z
subgradient

¢ The hinge loss is not differentiable at z=1
¢ Subgradient is any direction that is below the function
¢ For the hinge loss a possible subgradient is:

dehinge o 0 lf yWTX > 1
—yX otherwise

dw
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Example: Hinge loss

A
L(wW) = Z max (0,1 — y, W’ x,,) + §HWH2 objective

dL .
- = Zﬂ: —1[y,w'x, < 1lynx, + AW  subgradient

W< W—1 (Z —1[anTXn < 1ynx, + )\W) update

loss term regularization term
only for points yanxn <1 shrinks weights towards zero

perceptron update anTxn <0
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Example: Squared loss

2 A
L(w) Z (yn — WTXn) + §HWH2
mn
\matrix notation
X171 X192 x1p | [ wi |  YaXiawg |
X21 X22 X2 D wy || LaX24Wd
| XN1 XN2 XND | | Wp | LA XNAWG |
X w ¥
equivalent loss
. 1 2 A 2
min  L(w) = 5 [[Xw = Y[ + 7 [|w]]

CMPSCI 670
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Example: Squared loss

. 1 2 A 2
min £(w) = & [Xew Y|+ [[w]

w
Vwl(w)=X" Xw —-Y) + Aw
= X'"Xw -X"Y+ Aw
— (xTx n /\I) w—XTY

At optima the gradient=0
(xTx n /\I)w X"y =0
— (XTX + AID)w =X'Y

— w= (xTx+/\ID)—1xTY
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Matrix inversion vs. gradient descent

¢ Assume, we have D features and N points
¢ Overall time via matrix inversion
» The closed form solution involves computing:

w = (xTx + )\ID) -IxTy

» Total time is O(D2N + D3 + DN), assuming O(D3) matrix inversion
» If N > D, then total time is O(D2N)
¢ Overall time via gradient descent

» Gradient: _ Z 9y — W Xn)Xn 4w

» Each iteration: O(ND), T iterations: O(TND)
+ Which one is faster?
» Small problems D < 100: probably faster to run matrix inversion
» Large problems D > 10,000: probably faster to run gradient descent
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Optimization for linear models

+ Under suitable conditions™®, provided you pick the step sizes
appropriately, the convergence rate of gradient descent is O(1/N)

» I.e., if you want a solution within 0.0001 of the optimal you have to
run the gradient descent for N=1000 iterations.

¢ For linear models (hinge/logistic/exponential loss) and squared-norm
regularization there are off-the-shelf solvers that are fast in practice:
SVMpert " IBLINEAR, PEGASOS

» SVMpert ' LIBLINEAR use a different optimization method

.7 3 P s T . m .
* the function is strongly convex: f(y) = f(z)+ Vf(z)" (y — x) + 3||y —z|5
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Feature normalization

¢ Even if a feature is useful some normalization may be good
¢ Per-feature normalization

1
4 Centering Ln,d — Ln.d — Hd Hd = N Zajn,d
n
» Variance scaling Iy g < xn,d/ad o4 = % (Tn,qg — pa)?
mn
» Absolute scaling X, g — Tpn.a/T4d rq = max |z,
n Y
» Non-linear transformation Caltech-101 image classification

= square-root

Ln.d < vV Ln,d

(corrects for burstiness)

[ Object H Bag of ‘words’ |

41.6% linear
63.8% square-root

+ Per-example normalization

» fixed norm for each example ||x|| =1
CMPSCI 689 Subhransu Maji (UMASS) 29/25



Slides credit

¢ Figures of various “p-norms” are from Wikipedia
» http://en.wikipedia.org/wiki/L p_space
+ Some of the slides are based on CIML book by Hal Daume llI
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Appendix: code for surrogateloss

—— Zero/one
sk —Hinge
— Logistic
7 —— Exponential
—— Squared
6l
C
Q st
Qutput » 3
O ar
a
3
sl
% Code to plot various loss functions 1
yl=1;
Y2=llnspace(_2,3,500) ; 92 —115 -1‘ —015 0 015 1‘ 115 é 215
zeroOneLoss = yl*y2 <=0; Loss

hingeLoss = max(0, l-yl*y2);

logisticLoss = log(l+exp(-yl*y2))/log(2);
expLoss = exp(-yl*y2);

squaredLoss = (yl-y2)."2;

% Plot them

figure(l); clf; hold on;

plot(y2, zeroOneLoss,’'k-', 'LineWidth’,1); < queit|61t) ()()ij}
plot(y2, hingelLoss,'b—’, 'LineWidth’,1);

plot(y2, logisticLoss,’'r—',’'LineWidth’,1);

plot(y2, exploss,’'g—',’'LineWidth’,1);

plot(y2, squaredLoss, 'm—’', 'LineWidth’,1);

ylabel ('Prediction’, 'FontSize’,16);

xlabel(’'Loss’, 'FontSize’,16);

legend({’'Zero/one’, ’'Hinge’, 'Logistic’, 'Exponential’, ’'Squared’}, 'Location’,k
'NorthEast’, 'FontSize’,16);

box on;
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