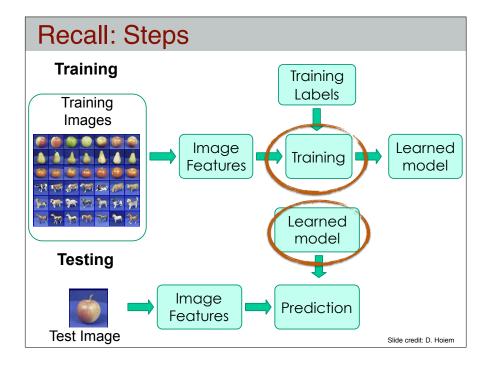
Decision trees

Subhransu Maji

CMPSCI 670: Computer Vision

November 1, 2016



The decision tree model of learning

- Classic and natural model of learning
- ◆ Question: Will an unknown student enjoy an unknown course?
 - You: Is the course under consideration in Systems?
 - Me: Yes
 - You: Has this student taken any other Systems courses?
- Me: Yes
- You: Has this student liked most previous Systems courses?
- ▶ Me: No
- You: I predict this student will not like this course.
- Goal of learner: Figure out what questions to ask, and in what order, and what to predict when you have answered enough questions

Learning a decision tree

- Recall that one of the ingredients of learning is training data
 - I'll give you (x, y) pairs, i.e., set of (attributes, label) pairs
 - We will simplify the problem by
 - → {0,+1, +2} as "liked"
 - → {-1,-2} as "hated"
- ♦ Here:

CMPSCI 670

- Questions are features
- Responses are feature values
- Rating is the label
- ◆ Lots of possible trees to build
- ◆ Can we find good one quickly?

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	у
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
О	n	n	n	n	y
0	y	n	n	y	y
0	n	y	n	y	n
0	y	y	у	y	у
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

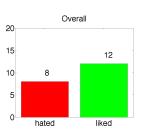
Course ratings dataset

CMPSCI 670 Subhransu Maji (UMASS)

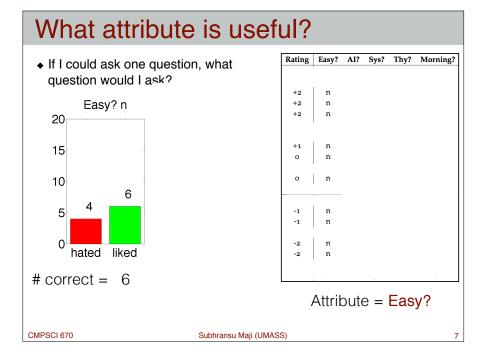
Subhransu Maji (UMASS)

Greedy decision tree learning

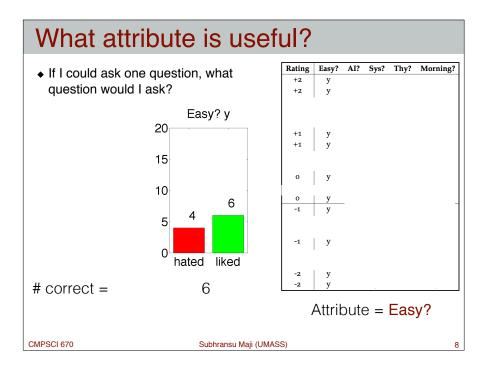
- If I could ask one question, what question would I ask?
- You want a feature that is most useful in predicting the rating of the course
- A useful way of thinking about this is to look at the histogram of the labels for each feature

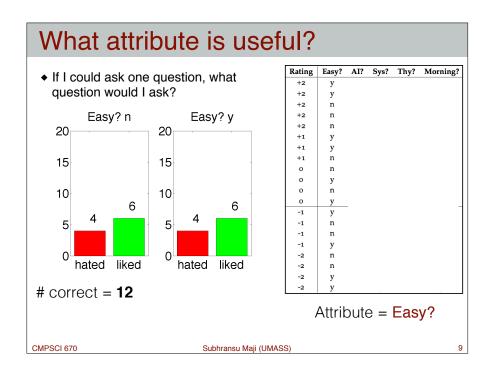


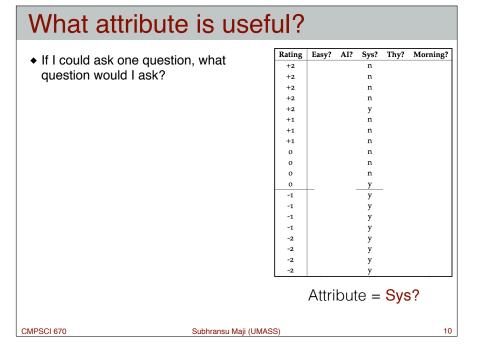
Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	y	у	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
0	n	n	n	n	y
О	y	n	n	y	y
0	n	y	n	y	n
0	у	y	y	y	у
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

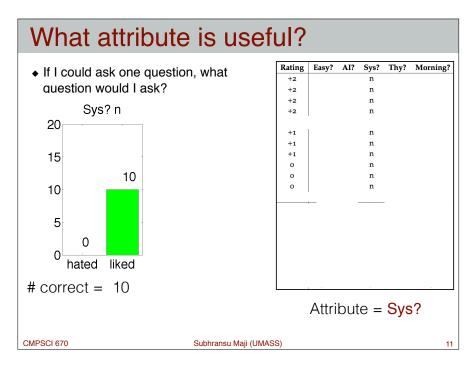


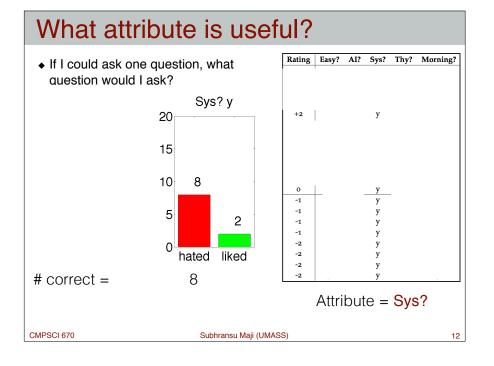
Subhransu Maji (UMASS)

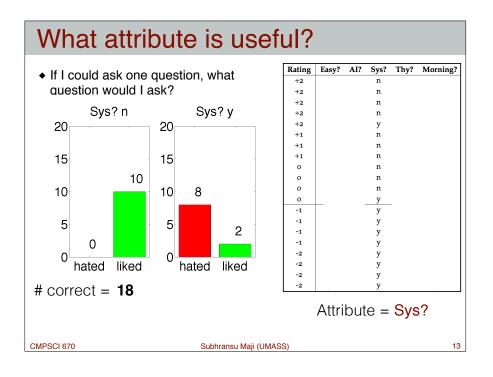


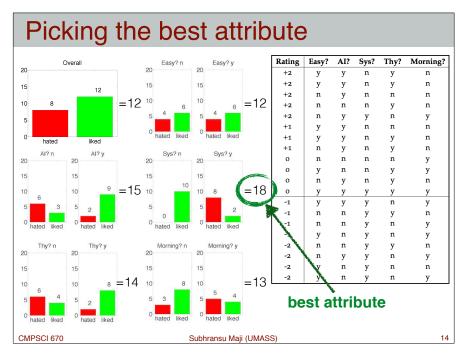












Decision tree training

- ◆ Training procedure
 - 1. Find the feature that leads to best prediction on the data
- 2.Split the data into two sets {feature = Y}, {feature = N}
- 3. Recurse on the two sets (Go back to Step 1)
- 4. Stop when some criteria is met
- ◆ When to stop?
 - When the data is unambiguous (all the labels are the same)
 - When there are no questions remaining
- When maximum depth is reached (e.g. limit of 20 questions)
- ◆ Testing procedure
 - Traverse down the tree to the leaf node
 - Pick the majority label

Algorithm 1 DECISIONTREETRAIN(data, remaining features) 1: guess ← most frequent answer in data // default answer for this data 2: if the labels in data are unambiguous then return Leaf(guess) // base case: no need to split further 4: else if remaining features is empty then return Leaf(guess) // base case: cannot split further 6: else // we need to guery more features **for all** $f \in remaining features$ **do** $NO \leftarrow$ the subset of *data* on which f=no $YES \leftarrow$ the subset of *data* on which f=yes $score[f] \leftarrow \#$ of majority vote answers in NO + # of majority vote answers in YES // the accuracy we would get if we only queried on f $f \leftarrow$ the feature with maximal *score*(f) $NO \leftarrow$ the subset of *data* on which f=no $YES \leftarrow$ the subset of *data* on which f=yes $left \leftarrow DecisionTreeTrain(NO, remaining features \setminus \{f\})$ $right \leftarrow DecisionTreeTrain(YES, remaining features \setminus \{f\})$ **return** Node(f, left, right) 19: end if

Subhransu Maji (UMASS)

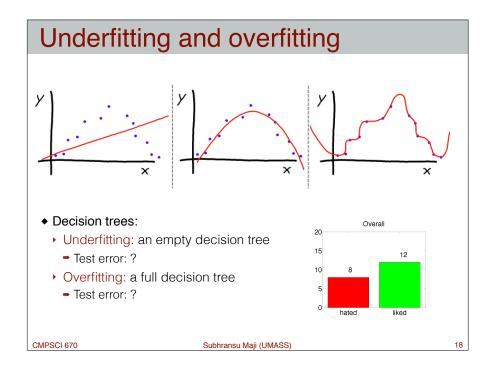
16

Decision tree train

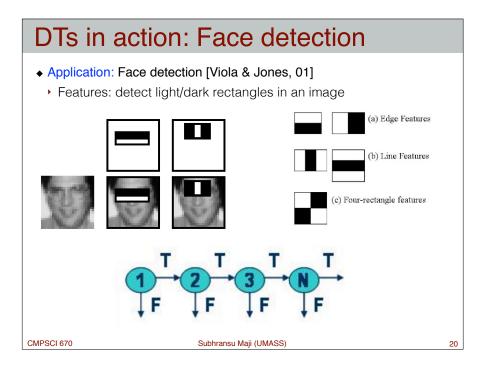
CMPSCI 670

CMPSCI 670 Subhransu Maji (UMASS)

Algorithm 2 DECISIONTREETEST(tree, test point) 1: If tree is of the form LEAF(guess) then 2: return guess 3: else if tree is of the form Node(f, left, right) then 4: if f = yes in test point then 5: return DECISIONTREETEST(left, test point) 6: else 7: return DECISIONTREETEST(right, test point) 8: end if 9: end if



Model, parameters, and hyperparameters • Model: decision tree • Parameters: learned by the algorithm • Hyperparameter: depth of the tree to consider • A typical way of setting this is to use validation data • Usually set 2/3 training and 1/3 testing • Split the training into 1/2 training and 1/2 validation • Estimate optimal hyperparameters on the validation data training validation testing



Ensembles

- Wisdom of the crowd: groups of people can often make better decisions than individuals
- Questions:
- Ways to combine base learners into ensembles
- ▶ We might be able to use simple learning algorithms
- Inherent parallelism in training
- Boosting a method that takes classifiers that are only slightly better than chance and learns an arbitrarily good classifier

Voting multiple classifiers

- ◆ Most of the learning algorithms we saw so far are deterministic
- If you train a decision tree multiple times on the same dataset, you will get the same tree
- ◆ Two ways of getting multiple classifiers:
 - Change the learning algorithm
 - → Given a dataset (say, for classification)
 - Train several classifiers: decision tree, kNN, logistic regression, neural networks with different architectures, etc
 - ightharpoonup Call these classifiers $f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x})$
 - Take majority of predictions $\hat{y} = \text{majority}(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x}))$
 - For regression use mean or median of the predictions
 - Change the dataset
 - → How do we get multiple datasets?

CMPSCI 670

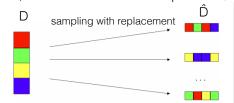
Subhransu Maji (UMASS)

22

Bagging

CMPSCI 670

- ◆ Option: split the data into K pieces and train a classifier on each
- A drawback is that each classifier is likely to perform poorly
- ◆ Bootstrap resampling is a better alternative
- Given a dataset D sampled i.i.d from a unknown distribution \mathcal{D} , and we get a new dataset \hat{D} by random sampling with replacement from D, then \hat{D} is also an i.i.d sample from \mathcal{D}



There will be repetitions

Probability that the first point will not be selected:

$$\left(1 - \frac{1}{N}\right)^N \longrightarrow \frac{1}{e} \sim 0.3679$$

Roughly only **63%** of the original data will be contained in any bootstrap

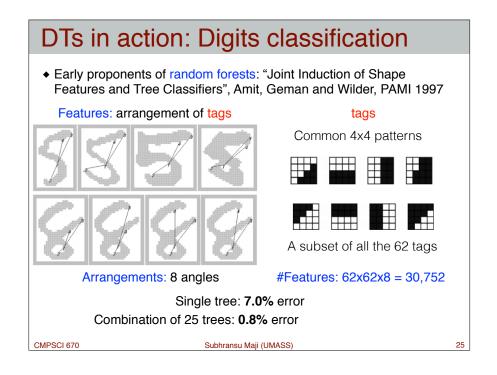
- ◆ Bootstrap aggregation (bagging) of classifiers [Breiman 94]
 - ▶ Obtain datasets D₁, D₂, ... ,D_N using bootstrap resampling from D
 - Train classifiers on each dataset and average their predictions

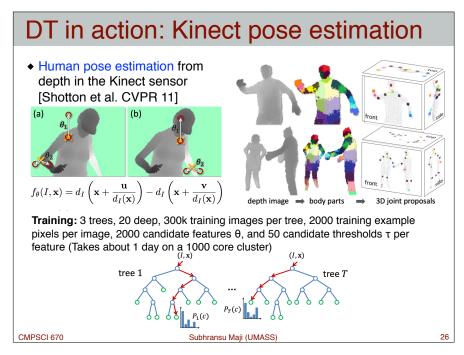
Random ensembles

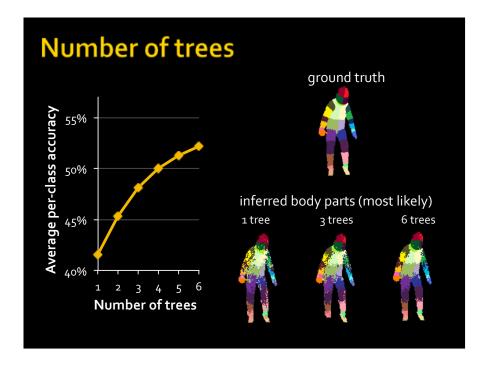
- ◆ One drawback of ensemble learning is that the training time increases
- For example when training an ensemble of decision trees the expensive step is choosing the splitting criteria
- ◆ Random forests are an efficient and surprisingly effective alternative
- Choose trees with a fixed structure and random features
 - Instead of finding the best feature for splitting at each node, choose a random subset of size k and pick the best among these
- → Train decision trees of depth d
- Average results from multiple randomly trained trees
- When k=1, no training is involved only need to record the values at the leaf nodes which is significantly faster
- ◆ Random forests tends to work better than bagging decision trees because bagging tends produce highly correlated trees — a good feature is likely to be used in all samples

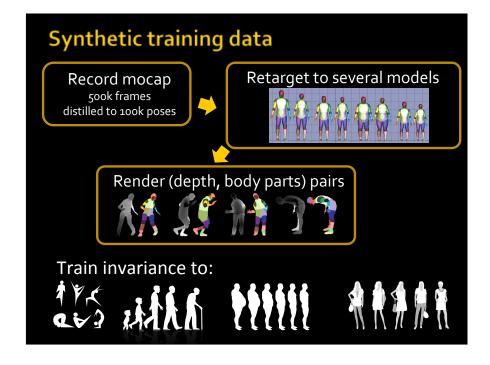
CMPSCI 670 Subhransu Maji (UMASS) 24

CMPSCI 670 Subhransu Maji (UMASS) 23









Slides credit

- ◆ Decision tree learning and material are based on CIML book by Hal Daume III (http://ciml.info/dl/v0_9/ciml-v0_9-ch01.pdf)
- ◆ Bias-variance figures https://theclevermachine.wordpress.com/tag/estimator-variance/
- ◆ Figures for random forest classifier on MNIST dataset Amit, Geman and Wilder, PAMI 1997 — http://www.cs.berkeley.edu/~malik/cs294/amitgemanwilder97.pdf
- ◆ Figures for Kinect pose "Real-Time Human Pose Recognition in Parts from Single Depth Images", J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, R. Moore, A. Kipman, A. Blake, CVPR 2011
- ◆ Credit for many of these slides go to Alyosha Efros, Shvetlana Lazebnik, Hal Daume III, Alex Berg, etc

CMPSCI 670 Subhransu Maji (UMASS)