Decision trees

Subhransu Maji CMPSCI 670: Computer Vision

November 1, 2016

Recall: Steps

Slide credit: D. Hoiem

The decision tree model of learning

- Classic and natural model of learning
- Question: Will an unknown student enjoy an unknown course?
 - You: Is the course under consideration in Systems?
 - Me: Yes
 - You: Has this student taken any other Systems courses?
 - Me: Yes
 - You: Has this student liked most previous Systems courses?
 - **Me:** No
 - You: I predict this student will not like this course.
- Goal of learner: Figure out what questions to ask, and in what order, and what to predict when you have answered enough questions

Learning a decision tree

- Recall that one of the ingredients of learning is training data
 - I'll give you (x, y) pairs, i.e., set of (attributes, label) pairs
 - We will simplify the problem by
 - → {0,+1, +2} as "liked"
 - ➡ {-1,-2} as "hated"
- ♦ Here:
 - Questions are features
 - Responses are feature values
 - Rating is the label
- Lots of possible trees to build
- Can we find good one quickly?

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	y	у	n	У	n
+2	у	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	У	n
+2	n	у	У	n	У
+1	у	у	n	n	n
+1	y	у	n	У	n
+1	n	у	n	У	n
ο	n	n	n	n	У
0	y	n	n	У	У
ο	n	у	n	У	n
ο	у	у	У	У	У
-1	у	у	У	n	у
-1	n	n	У	У	n
-1	n	n	У	n	У
-1	y	n	У	n	У
-2	n	n	У	У	n
-2	n	у	У	n	У
-2	y	n	У	n	n
-2	v	n	v	n	v

Course ratings dataset

Greedy decision tree learning

- If I could ask one question, what question would I ask?
 - You want a feature that is most useful in predicting the rating of the course
 - A useful way of thinking about this is to look at the histogram of the labels for each feature

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у	у	n	у	n
+2	у	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	У	n
+2	n	у	У	n	У
+1	у	у	n	n	n
+1	у	у	n	У	n
+1	n	у	n	У	n
0	n	n	n	n	у
0	у	n	n	У	у
0	n	у	n	У	n
0	у	у	у	у	у
-1	у	у	у	n	у
-1	n	n	У	У	n
-1	n	n	У	n	У
-1	У	n	У	n	у
-2	n	n	У	У	n
-2	n	у	у	n	У
-2	У	n	у	n	n
-2	y y	n	У	n	У

 If I could ask one question, what question would I ask?

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у				
+2	у				
+2	n				
+2	n				
+2	n				
+1	у				
+1	у				
+1	n				
0	n				
0	у				
0	n				
0	у				
-1	у				
-1	n				
-1	n				
-1	у				
-2	n				
-2	n				
-2	у				
-2	У				

 If I could ask one question, what question would I ask?

Rating	Easy?	AI?	Sys?	Thy?	Morning?
	I				
+2	n				
+2	n				
+2	n				
	I				
+1	n				
0	n				
	1				
0	n				
					-
-1	n				
-1	n				
-2	n				
-2	n				

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	y				
+2	y y				
+2	n				
+2	n				
+2	n				
+1	y				
+1	y				
+1	n				
ο	n				
ο	y				
ο	n				
0	y	_			_
-1	y				
-1	n				
-1	n				
-1	y				
-2	n				
-2	n				
-2	y				
-2	y y				

 If I could ask one question, what question would I ask?

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2			n		
+2			n		
+2			n		
+2			n		
+2			У		
+1			n		
+1			n		
+1			n		
0			n		
0			n		
0			n		
0		_	У		
-1			У		
-1			У		
-1			У		
-1			У		
-2			У		
-2			у		
-2			у		
-2			у		

 If I could ask one question, what question would I ask?

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2			n		
+2			n		
+2			n		
+2			n		
+1			n		
+1			n		
+1			n		
0			n		
0			n		
0			n		
		_	-		
			-		-

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2			n		
+2			n		
+2			n		
+2			n		
+2			У		
+1			n		
+1			n		
+1			n		
0			n		
0			n		
0			n		
0			У		
-1		_	У	-	
-1			У		
-1			У		
-1			У		
-2			У		
-2			У		
-2			У		
-2			y		

Picking the best attribute

CMPSCI 670

Subhransu Maji (UMASS)

Decision tree training

Training procedure

1. Find the feature that leads to best prediction on the data 2. Split the data into two sets {feature = Y}, {feature = N}

3.Recurse on the two sets (Go back to Step 1)

4.Stop when some criteria is met

When to stop?

- When the data is unambiguous (all the labels are the same)
- When there are no questions remaining
- When maximum depth is reached (e.g. limit of 20 questions)

Testing procedure

- Traverse down the tree to the leaf node
- Pick the majority label

Decision tree train

Algorithm 1 DECISIONTREETRAIN(data, remaining features)

- $_{1:}$ guess \leftarrow most frequent answer in data // default answer for this data ²: if the labels in *data* are unambiguous then **return** LEAF(guess) // base case: no need to split further 3: else if *remaining features* is empty then **return** LEAF(guess) // base case: cannot split further 5: 6: else // we need to guery more features for all $f \in remaining features$ do 7: $NO \leftarrow$ the subset of *data* on which *f*=*no* 8: $YES \leftarrow$ the subset of *data* on which *f*=yes 9: *score*[f] \leftarrow # of majority vote answers in *NO* 10: + # of majority vote answers in YES 11: // the accuracy we would get if we only queried on f end for 12: $f \leftarrow$ the feature with maximal *score*(f) 13:
- ^{14:} $NO \leftarrow$ the subset of *data* on which *f*=*no*
- $YES \leftarrow \text{ the subset of } data \text{ on which } f = yes$
- 16: *left* \leftarrow **DecisionTreeTrain**(*NO*, *remaining features* \setminus {*f*})
- *right* \leftarrow **DecisionTreeTrain**(YES, remaining features $\setminus \{f\}$)
- 18: **return** Node(*f*, *left*, *right*)
- $_{\mbox{\tiny 19:}}$ end if

Decision tree test

Algorithm 2 DECISIONTREETEST(*tree*, *test point*)

- 1: if tree is of the form LEAF(guess) then
- 2: return guess
- 3: **else if** *tree* is of the form NODE(*f*, *left*, *right*) **then**
- 4: **if** f = yes in test point then
- 5: **return DecisionTreeTest**(*left*, *test point*)
- 6: else
- 7: **return DecisionTreeTest**(*right*, *test point*)
- 8: end if
- 9: end if

Underfitting and overfitting

Decision trees:

- Underfitting: an empty decision tree
 - ➡ Test error: ?
- Overfitting: a full decision tree
 - ➡ Test error: ?

Model, parameters, and hyperparameters

- Model: decision tree
- Parameters: learned by the algorithm
- Hyperparameter: depth of the tree to consider
 - A typical way of setting this is to use *validation* data
 - Usually set 2/3 *training* and 1/3 *testing*
 - Split the training into 1/2 training and 1/2 validation
 - Estimate optimal hyperparameters on the validation data

training	validation	testing

DTs in action: Face detection

- Application: Face detection [Viola & Jones, 01]
 - Features: detect light/dark rectangles in an image

Ensembles

- Wisdom of the crowd: groups of people can often make better decisions than individuals
- Questions:
 - Ways to combine base learners into ensembles
 - We might be able to use simple learning algorithms
 - Inherent parallelism in training
 - Boosting a method that takes classifiers that are only slightly better than chance and learns an arbitrarily good classifier

Voting multiple classifiers

- Most of the learning algorithms we saw so far are deterministic
 - If you train a decision tree multiple times on the same dataset, you will get the same tree
- Two ways of getting multiple classifiers:
 - Change the learning algorithm
 - Given a dataset (say, for classification)
 - Train several classifiers: decision tree, kNN, logistic regression, neural networks with different architectures, etc
 - Call these classifiers $f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_M(\mathbf{x})$
 - Take majority of predictions $\hat{y} = \text{majority}(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x}))$
 - For regression use mean or median of the predictions

- Change the dataset
 - How do we get multiple datasets?

Bagging

- Option: split the data into K pieces and train a classifier on each
 - A drawback is that each classifier is likely to perform poorly
- Bootstrap resampling is a better alternative
 - Given a dataset D sampled i.i.d from a unknown distribution D, and we get a new dataset D by random sampling with replacement from D, then D is also an i.i.d sample from D

There will be repetitions

Probability that the first point will not be selected:

$$\left(1-\frac{1}{N}\right)^N \longrightarrow \frac{1}{e} \sim 0.3679$$

Roughly only **63%** of the original data will be contained in any bootstrap

- Bootstrap aggregation (bagging) of classifiers [Breiman 94]
 - Obtain datasets D₁, D₂, ..., D_N using bootstrap resampling from D
 - Train classifiers on each dataset and average their predictions

Random ensembles

- One drawback of ensemble learning is that the training time increases
 - For example when training an ensemble of decision trees the expensive step is choosing the splitting criteria
- Random forests are an efficient and surprisingly effective alternative
 - Choose trees with a fixed structure and random features
 - Instead of finding the best feature for splitting at each node, choose a random subset of size k and pick the best among these
 - Train decision trees of depth d
 - Average results from multiple randomly trained trees
 - When k=1, no training is involved only need to record the values at the leaf nodes which is significantly faster
- Random forests tends to work better than bagging decision trees because bagging tends produce highly correlated trees — a good feature is likely to be used in all samples

DTs in action: Digits classification

 Early proponents of random forests: "Joint Induction of Shape Features and Tree Classifiers", Amit, Geman and Wilder, PAMI 1997

Features: arrangement of tags

tags

Common 4x4 patterns

A subset of all the 62 tags

Arrangements: 8 angles

#Features: 62x62x8 = 30,752

Single tree: **7.0%** error Combination of 25 trees: **0.8%** error

Subhransu Maji (UMASS)

DT in action: Kinect pose estimation

 Human pose estimation from depth in the Kinect sensor [Shotton et al. CVPR 11]

$$f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$$

Training: 3 trees, 20 deep, 300k training images per tree, 2000 training example pixels per image, 2000 candidate features θ , and 50 candidate thresholds τ per feature (Takes about 1 day on a 1000 core cluster)

CMPSCI 670

Number of trees

ground truth

inferred body parts (most likely)

Synthetic training data

Record mocap 500k frames distilled to 100k poses

Retarget to several models

Render (depth, body parts) pairs

Train invariance to: Image: Second second

Slides credit

- Decision tree learning and material are based on CIML book by Hal Daume III (<u>http://ciml.info/dl/v0_9/ciml-v0_9-ch01.pdf</u>)
- Bias-variance figures <u>https://theclevermachine.wordpress.com/</u> <u>tag/estimator-variance/</u>
- Figures for random forest classifier on MNIST dataset Amit, Geman and Wilder, PAMI 1997 — <u>http://www.cs.berkeley.edu/~malik/</u> <u>cs294/amitgemanwilder97.pdf</u>
- Figures for Kinect pose "Real-Time Human Pose Recognition in Parts from Single Depth Images", J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, R. Moore, A. Kipman, A. Blake, CVPR 2011
- Credit for many of these slides go to Alyosha Efros, Shvetlana Lazebnik, Hal Daume III, Alex Berg, etc