Recognition

Subhransu Maji

CMPSCI 670: Computer Vision October 25, 2016

Agenda for the next few lectures

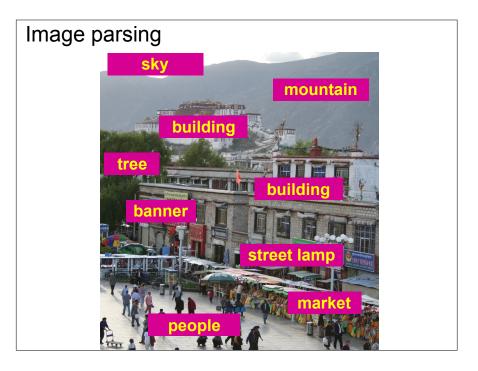
- ◆ Overview of recognition
- ◆ Image representations
- ◆ Machine learning
- ◆ Deep learning

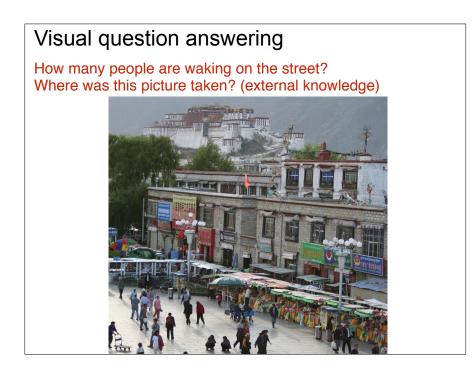
CMPSCI 670

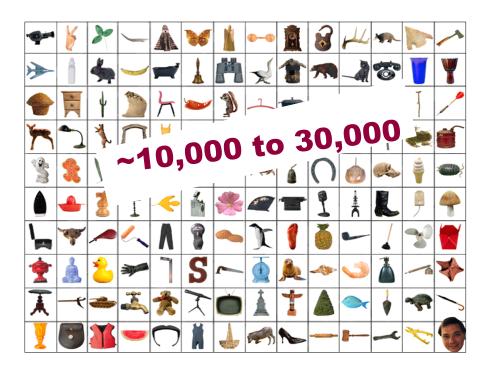
Subhransu Maji (UMass, Fall 16)

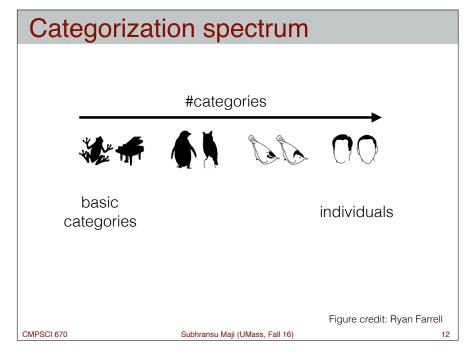
Scene categorization

• outdoor/indoor
• city/forest/factory/etc.









History of ideas in recognition

1960s – early 1990s: the geometric era 1990s: appearance-based models

Late 1990s: local features

Early 2000s: parts-and-shape models

Mid-2000s: bags-of-features, learning-based techniques

Present trends: big data, recognition + X (X=geometry, robotics, language), deep learning, getting AI to work, many applications: health care, autonomous driving, face recognition, image/video

search, etc.

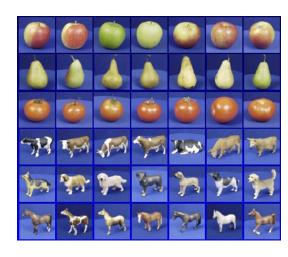
CMPSCI 670

Subhransu Maji (UMass, Fall 16)

13

15

Recognition by learning



CMPSCI 670

Subhransu Maji (UMass, Fall 16)

The machine learning framework

Apply a prediction function to a feature representation of the image to get the desired output:

$$f(\mathbf{w}) = \text{``cow''}$$

The machine learning framework

Training: given a *training set* of labeled examples $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$, estimate the prediction function f by minimizing the prediction error on the training set **Testing:** apply f to a never before seen *test* example \mathbf{x} and author the predicted value $\mathbf{x}_1 = \mathbf{y}_1 + \mathbf{y}_2 + \mathbf{y}_3 + \mathbf{y}_4 + \mathbf{y}_3 + \mathbf{y}_4 + \mathbf{y}_5 + \mathbf{y}$

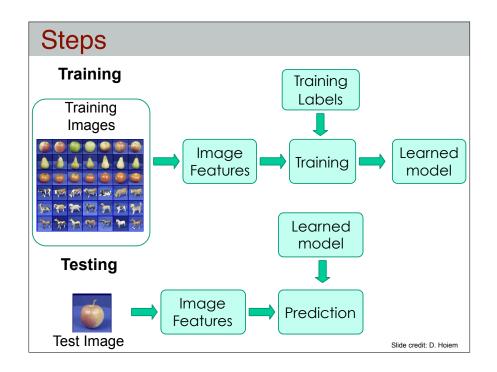
output the predicted value y = f(x)

CMPSCI 670 Subhransu Maji (UMass, Fall 16)

CMPSCI 670

Subhransu Maji (UMass, Fall 16)

16



Ingredients for learning

- ◆ Whole idea: Inject your knowledge into a learning system
- Sources of knowledge:
 - 1. Feature representation
 - → Not typically a focus of machine learning
 - Typically seen as "problem specific"
 - → However, it's hard to learn from bad representations
 - 2. Training data: labeled examples
 - Often expensive to label lots of data
 - Sometimes data is available for "free"
 - 3. Model
 - No single learning algorithm is always good ("no free lunch")
 - Different learning algorithms work with different ways of representing the learned classifier

CMPSCI 670

Subhransu Maji (UMass, Fall 16)

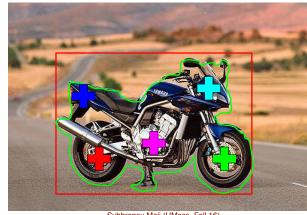
18

Raw pixels (and simple functions of raw pixels) GIST descriptors Gradient histograms CMPSCI 670 Subhransu Maji (UMass, Fall 16)

Recognition task and supervision

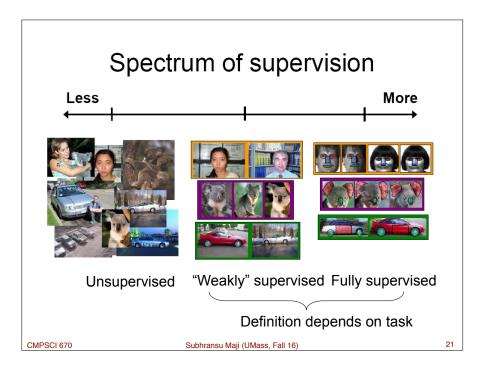
Images in the training set must be annotated with the "correct answer" that the model is expected to produce

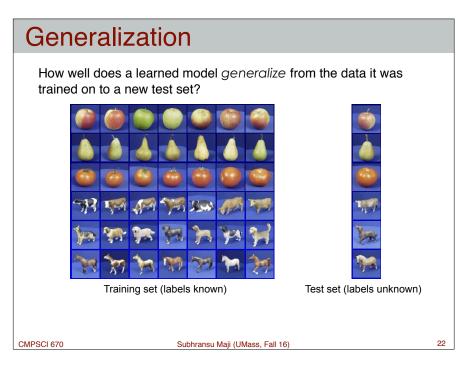
Contains a motorbike



CMPSCI 670

Subhransu Maji (UMass, Fall 16)





Datasets

Circa 2001: five categories, hundreds of images per category

Circa 2004: 101 categories

Today: up to thousands of categories, millions of images

CMPSCI 670 Subhransu Maji (UMass, Fall 16)

Caltech-101: Intra-class variability

PASCAL Visual Object Classes Challenge (2005-12) http://pascallin.ecs.soton.ac.uk/challenges/VOC/ • Challenge classes: Person: person Animal: bird, cat, cow, dog, horse, sheep Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train Indoor: bottle, chair, dining table, potted plant, sofa, tv/ monitor • Dataset size (by 2012): 11.5K training/validation images, 27K bounding boxes, 7K segmentations

