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Overview of recognition
Image representations
Machine learning
Deep learning

Agenda for the next few lectures
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Scene categorization
• outdoor/indoor 
• city/forest/factory/etc.
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Image annotation/tagging

• street 
• people 
• building 
• mountain 
• …
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Object detection
• find pedestrians
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Activity recognition

• walking 
• shopping 
• rolling a cart 
• sitting 
• talking 
• …
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Image parsing
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Visual question answering
How many people are waking on the street?
Where was this picture taken? (external knowledge)



How many visual object categories?

~10,000 to 30,000

Biederman 1987

http://wexler.free.fr/library/files/biederman%20(1987)%20recognition-by-components.%20a%20theory%20of%20human%20image%20understanding.pdf
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~10,000 to 30,000
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Categorization spectrum
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Figure credit: Ryan Farrell

#categories

basic 
categories individuals
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1960s – early 1990s: the geometric era
1990s: appearance-based models
Late 1990s: local features
Early 2000s: parts-and-shape models
Mid-2000s: bags-of-features, learning-based techniques
Present trends: big data, recognition + X (X=geometry, robotics, 
language), deep learning, getting AI to work, many applications: 
health care, autonomous driving, face recognition, image/video 
search, etc.

History of ideas in recognition
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Recognition by learning
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Apply a prediction function to a feature representation of the 
image to get the desired output: 

f(    ) = “apple”
f(    ) = “tomato”
f(    ) = “cow”

The machine learning framework
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                                    y = f(x)

Training: given a training set of labeled examples  
{(x1,y1), …, (xN,yN)}, estimate the prediction function f by 
minimizing the prediction error on the training set
Testing: apply f to a never before seen test example x and 
output the predicted value y = f(x)

The machine learning framework
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function

Image 
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Slide credit: D. Hoiem
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Whole idea: Inject your knowledge into a learning system

Ingredients for learning
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Sources of knowledge:
1. Feature representation

2. Training data: labeled examples

3. Model

➡ Not typically a focus of machine learning 
➡ Typically seen as “problem specific” 
➡ However, it’s hard to learn from bad representations

➡ Often expensive to label lots of data 
➡ Sometimes data is available for “free”

➡ No single learning algorithm is always good (“no free lunch”) 
➡ Different learning algorithms work with different ways of 

representing the learned classifier
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Features (examples)
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bags of features

GIST descriptors Gradient histograms

Raw pixels (and simple 
functions of raw pixels)
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Images in the training set must be annotated with the “correct 
answer” that the model is expected to produce

Contains a motorbike

Recognition task and supervision
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Unsupervised “Weakly” supervised Fully supervised

Definition depends on task
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How well does a learned model generalize from the data it was 
trained on to a new test set?

Generalization
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Training set (labels known) Test set (labels unknown)
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Circa 2001: five categories, hundreds of images per category
Circa 2004: 101 categories
Today: up to thousands of categories, millions of images

Datasets
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Caltech 101 & 256

Griffin, Holub, Perona, 2007 

Fei-Fei, Fergus, Perona, 2004 

http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 
http://www.vision.caltech.edu/Image_Datasets/Caltech256/ 



Caltech-101: Intra-class variability



PASCAL Visual Object Classes Challenge (2005-12)

• Challenge classes: 
Person: person  
Animal: bird, cat, cow, dog, horse, sheep  
Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train  
Indoor: bottle, chair, dining table, potted plant, sofa, tv/
monitor 

• Dataset size (by 2012):  
11.5K training/validation images, 27K bounding boxes, 7K 
segmentations  

http://pascallin.ecs.soton.ac.uk/challenges/VOC/



Russell, Torralba, Murphy, Freeman, 2008

LabelMe Dataset http://labelme.csail.mit.edu/
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ImageNet
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http://www.image-net.org


