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Has everyone submitted a project abstract?
‣ I’ll take a look at these over the weekend 
‣ Expect some comments if you have not talked to me already 

Administrativia
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Any transformation of an image into a new representation
Example: transform an image into a binary edge map

What is an image feature?
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Image source: wikipedia
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Introduce invariance: illumination, deformations, position
Preserve useful properties: shape, texture, color
Make the subsequent learning easier
‣ Ability to learn from a few examples 
‣ Can use simpler classifiers (prevent overfitting)

Goals of a feature map
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Image: [Fergus05]
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Most learning methods are invariant to feature permutation
‣ E.g., patch vs. pixel representation of images

The importance of good features
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can you recognize the digits?

permute pixels

bag of pixels

permute patches

bag of patches
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In general the optimal feature depends on
‣ the nature of the recognition task 
‣ the choice of subsequent classifier 

➡ “Shallow” learning — hand-crafted features + simple classifiers 
➡ “Deep” learning — end-to-end mapping of pixels to labels  

Two families of features that work well with simple classifiers
‣ Histogram of oriented gradients — captures overall shape 
‣ Bag of visual words — captures local shape and texture

Hand-crafting features

7
shape texture
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Recall the feature matching step in image alignment
Problem with pixel values as a feature representation 
‣ illumination changes, small deformations 

How can we design a feature that is robust to these changes?

Motivation
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Descriptor computation:
‣ Divide patch into 4x4 sub-patches 
‣ Compute histogram of gradient orientations (8 reference angles) inside 

each sub-patch 
‣ Resulting descriptor: 4x4x8 = 128 dimensions 
‣ Additional step: normalize the descriptor to unit length

SIFT features
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David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 
pp. 91-110, 2004. 
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Descriptor computation:
‣ Divide patch into 4x4 sub-patches 
‣ Compute histogram of gradient orientations (8 reference angles) inside 

each sub-patch 
‣ Resulting descriptor: 4x4x8 = 128 dimensions 
‣ Additional step: normalize the descriptor to unit length 

Advantage over raw vectors of pixel values
‣ Gradients less sensitive to illumination change 
‣ Pooling of gradients over the sub-patches achieves robustness to small 

shifts, but still preserves some spatial information

SIFT features
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David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 
pp. 91-110, 2004. 
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Can apply the same idea to the whole image
‣ Preserves the overall structure of the image 
‣ Provides robustness to illumination and small deformations 

Introduced by Dalal and Triggs (CVPR 2005) for pedestrian detection

Histogram of Oriented Gradients
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HOG feature
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Divide the image into blocks
Compute histograms of gradients for each regions

HOG feature: basic idea
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Additional steps for more invariance
Logarithm of the intensity values 
Local contrast normalization

HOG feature: additional steps

13Image credit: N. Snavely

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005



Subhransu Maji (UMass, Fall 16)CMPSCI 670

Smaller bin-size: better spatial resolution 
Larger bin-size: better invariance to deformations 
Optimal value depends on the object category being modeled 
‣ e.g. rigid vs. deformable objects

Effect of bin-size
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10x10	cells	

20x20	cells	
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Compute the HOG feature map for the image
Convolve the template with the feature map to get score
‣ Do this across scales (since we don’t know the size of the person) 
Find peaks of the response map (non-max suppression)

Works well for template matching
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TemplateHOG feature map Detector response map



Example pedestrian detections

Introduction

Detect & localize upright people
in static images

Challenges
Wide variety of articulated poses
Variable appearance/clothing
Complex backgrounds
Unconstrained illumination
Occlusions, different scales

Applications
Pedestrian detection for smart cars
Film & media analysis
Visual surveillance

Histograms of Oriented Gradients for Human Detection – p. 2/13
[Dalal06]

We will discuss object detection in detail later
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Two families of features that work well with simple classifiers
‣ Histogram of oriented gradients — captures overall shape 
‣ Bag of visual words — captures local shape and texture

Hand-crafting features

17
shape texture
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Origin and motivation of the “bag of words” model
Algorithm pipeline
‣ Extracting local features 
‣ Learning a dictionary — clustering using k-means 
‣ Encoding methods — hard vs. soft assignment 
‣ Spatial pooling — pyramid representations

Bag of visual words

18

Figure from Chatfield et al.,2011



Image as a “bag of patches”

Properties:  
• Spatial structure is not preserved 
• Invariance to large translations 

Compare this to the HOG feature
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Texture is characterized by the repetition of basic elements 
For stochastic textures, it is the identity of these elements, not their 
spatial arrangement, that matters

Origin 1: Texture recognition
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Origin 1: Texture recognition

Universal texton dictionary

histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003
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Orderless document representation: frequencies of words from a 
dictionary  Salton & McGill (1983)

Origin 2: Bag-of-words models

22
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Orderless document representation: frequencies of words from a 
dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models
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Orderless document representation: frequencies of words from a 
dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models
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Orderless document representation: frequencies of words from a 
dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models
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Origin and motivation of the “bag of words” model
Algorithm pipeline
‣ Extracting local features 
‣ Learning a dictionary — clustering using k-means 
‣ Encoding methods — hard vs. soft assignment 
‣ Spatial pooling — pyramid representations

Lecture outline
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Figure from Chatfield et al.,2011
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Regular grid or interest regions

Local feature extraction
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corner or blobsgrid

Slide credit: Josef Sivic
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Normalize patch

Detect patches

Compute 
descriptor

Local feature extraction
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Choices of descriptor: 
• SIFT 
• The patch itself 
• …

Slide credit: Josef Sivic
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…

Extract features from many images

Local feature extraction

Slide credit: Josef Sivic
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Origin and motivation of the “bag of words” model
Algorithm pipeline
‣ Extracting local features 
‣ Learning a dictionary — clustering using k-means 
‣ Encoding methods — hard vs. soft assignment 
‣ Spatial pooling — pyramid representations

Lecture outline
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Figure from Chatfield et al.,2011



Subhransu Maji (UMass, Fall 16)CMPSCI 670

Learning a dictionary
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…

Slide credit: Josef Sivic
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Clustering

…

32

Learning a dictionary

Slide credit: Josef Sivic
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Clustering

…
Visual vocabulary

33

Learning a dictionary

Slide credit: Josef Sivic
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Basic idea: group together similar instances
Example: 2D points

Clustering

34
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Basic idea: group together similar instances
Example: 2D points

Clustering

35

dist(x,y) = ||x� y||22

What could similar mean?
‣ One option: small Euclidean distance (squared) 

‣ Clustering results are crucially dependent on the measure of 
similarity (or distance) between points to be clustered
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Given (x1, x2, …, xn) partition the n observations into k (≤ n) sets 
S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of 
squared distances 

The objective is to minimize:

Clustering using k-means

36

argmin
S

kX

i=1

X

x2Si

||x� µi||2

cluster center
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Initialize k centers by picking k points randomly among all the points
Repeat till convergence (or max iterations)
‣ Assign each point to the nearest center (assignment step) 

‣ Estimate the mean of each group (update step)

Lloyd’s algorithm for k-means

37

argmin
S

kX

i=1

X

x2Si

||x� µi||2

argmin
S

kX

i=1

X

x2Si

||x� µi||2
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k-means in action

38
http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/
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k-means for image segmentation
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Grouping pixels based 
 on intensity similarity

feature space: intensity value (1D)

K=2

K=3
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Example codebook

40

…
Source: B. Leibe

Appearance codebook
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Another codebook

41

Appearance codebook
…

Source: B. Leibe
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Origin and motivation of the “bag of words” model
Algorithm pipeline
‣ Extracting local features 
‣ Learning a dictionary — clustering using k-means 
‣ Encoding methods — hard vs. soft assignment 
‣ Spatial pooling — pyramid representations

Lecture outline
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Figure from Chatfield et al.,2011
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Assigning words to features

Encoding methods

43

Visual vocabulary

1

2 3

…

partition of space

Also called hard assignment
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Assigning words to features

Encoding methods

44

Visual vocabulary

1

2 3

partition of space large quantization error

similar features

different words

hard assignment

1 0 0 0 0 1
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Assigning words to features

Encoding methods

45

Visual vocabulary

1

2 3

partition of space

soft assignment

↵i / e�f(d(x,ci))

assign high weights to 
centers that are close

in practice non-zero to 
only k-nearest neighbors
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Assigning words to features

Encoding methods
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Visual vocabulary

1

2 3

partition of space

similar features

soft assignment

0.6 0 0.4 0.4 0 0.6

soft assignment

hard assignment

1 0 0 0 0 1

↵i / e�f(d(x,ci))
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What should be the size of the dictionary?
‣ Too small: doesn’t capture the variability of the data (underfitting) 
‣ Too large: too few points per cluster (overfitting) 

Speed of embedding
‣ Exact nearest neighbor is slow if the dictionary is large 
‣ Approximate nearest neighbor techniques 

➡ Search trees — organize data in a tree 
➡ Hashing — create buckets in the feature space

Encoding considerations

47
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Origin and motivation of the “bag of words” model
Algorithm pipeline
‣ Extracting local features 
‣ Learning a dictionary — clustering using k-means 
‣ Encoding methods — hard vs. soft assignment 
‣ Spatial pooling — pyramid representations

Lecture outline
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Figure from Chatfield et al.,2011



Spatial pyramids

level 0

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: sum embeddings of local features within a region



Spatial pyramids

level 0 level 1

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: sum embeddings of local features within a region

Same motivation as SIFT — keep coarse layout information



Spatial pyramids

level 0 level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: sum embeddings of local features within a region

Same motivation as SIFT — keep coarse layout information



Subhransu Maji (UMass, Fall 16)CMPSCI 670

Two families of features that work well with simple classifiers
‣ Histogram of oriented gradients — captures overall shape 
‣ Bag of visual words — captures local shape and texture

Summary of hand-crafted features

52

shape texture


