Image representations

Subhransu Maji

CMPSCI 670: Computer Vision

October 25/27, 2016

Administrativia

- ◆ Has everyone submitted a project abstract?
 - I'll take a look at these over the weekend
 - Expect some comments if you have not talked to me already

Recall: Steps

What is an image feature?

- ◆ Any transformation of an image into a new representation
- ◆ Example: transform an image into a binary edge map

Image source: wikipedia

Goals of a feature map

- ◆ Introduce invariance: illumination, deformations, position
- ◆ Preserve useful properties: shape, texture, color
- ◆ Make the subsequent learning easier
 - Ability to learn from a few examples
 - Can use simpler classifiers (prevent overfitting)

Figure 1.3: Variation in appearance due to a change in illumination

Image: [Fergus05]

The importance of good features

- Most learning methods are invariant to feature permutation
 - ▶ E.g., patch vs. pixel representation of images

can you recognize the digits?

Hand-crafting features

- ◆ In general the optimal feature depends on
 - the nature of the recognition task
 - the choice of subsequent classifier
 - "Shallow" learning hand-crafted features + simple classifiers
 - "Deep" learning end-to-end mapping of pixels to labels
- ◆ Two families of features that work well with simple classifiers
 - Histogram of oriented gradients captures overall shape
 - Bag of visual words captures local shape and texture

texture

Motivation

- ◆ Recall the feature matching step in image alignment
- ◆ Problem with pixel values as a feature representation
 - illumination changes, small deformations

◆ How can we design a feature that is robust to these changes?

SIFT features

Descriptor computation:

- Divide patch into 4x4 sub-patches
- Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
- Resulting descriptor: 4x4x8 = 128 dimensions
- Additional step: normalize the descriptor to unit length

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

SIFT features

Descriptor computation:

- Divide patch into 4x4 sub-patches
- Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
- Resulting descriptor: 4x4x8 = 128 dimensions
- Additional step: normalize the descriptor to unit length

Advantage over raw vectors of pixel values

- Gradients less sensitive to illumination change
- Pooling of gradients over the sub-patches achieves robustness to small shifts, but still preserves some spatial information

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Histogram of Oriented Gradients

- ◆ Can apply the same idea to the whole image
 - Preserves the overall structure of the image
 - Provides robustness to illumination and small deformations
- Introduced by Dalal and Triggs (CVPR 2005) for pedestrian detection

HOG feature

HOG feature: basic idea

- ◆ Divide the image into blocks
- ◆ Compute histograms of gradients for each regions

HOG feature: additional steps

- Additional steps for more invariance
 - o Logarithm of the intensity values
 - Local contrast normalization

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Effect of bin-size

- ◆ Smaller bin-size: better spatial resolution
- ◆ Larger bin-size: better invariance to deformations
- Optimal value depends on the object category being modeled
 - e.g. rigid vs. deformable objects

Works well for template matching

- ◆ Compute the HOG feature map for the image
- Convolve the template with the feature map to get score
 - Do this across scales (since we don't know the size of the person)
- ◆ Find peaks of the response map (non-max suppression)

Example pedestrian detections

We will discuss object detection in detail later

Hand-crafting features

- Two families of features that work well with simple classifiers
 - Histogram of oriented gradients captures overall shape
 - Bag of visual words captures local shape and texture

shape

Bag of visual words

- Origin and motivation of the "bag of words" model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary clustering using k-means
 - ▶ Encoding methods hard vs. soft assignment
 - Spatial pooling pyramid representations

Image as a "bag of patches"

Properties:

- Spatial structure is not preserved
- Invariance to large translations

Compare this to the HOG feature

Origin 1: Texture recognition

- ◆ Texture is characterized by the repetition of basic elements
- ◆ For stochastic textures, it is the identity of these elements, not their spatial arrangement, that matters

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Origin 1: Texture recognition

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Lecture outline

- Origin and motivation of the "bag of words" model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary clustering using k-means
 - Encoding methods hard vs. soft assignment
 - Spatial pooling pyramid representations

Figure from Chatfield et al.,2011

Local feature extraction

◆ Regular grid or interest regions

corner or blobs

Slide credit: Josef Sivic

Local feature extraction

Detect patches

Choices of descriptor:

- SIFT
- The patch itself
- •

Slide credit: Josef Sivic

Local feature extraction

Extract features from many images

Slide credit: Josef Sivic

Lecture outline

- Origin and motivation of the "bag of words" model
- ◆ Algorithm pipeline
 - Extracting local features
 - Learning a dictionary clustering using k-means
 - Encoding methods hard vs. soft assignment
 - Spatial pooling pyramid representations

Learning a dictionary

Learning a dictionary

Learning a dictionary

Clustering

- ◆ Basic idea: group together similar instances
- ◆ Example: 2D points

Clustering

- ◆ Basic idea: group together similar instances
- ◆ Example: 2D points

- What could similar mean?
 - One option: small Euclidean distance (squared)

$$\operatorname{dist}(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_2^2$$

 Clustering results are crucially dependent on the measure of similarity (or distance) between points to be clustered

Clustering using k-means

- ◆ Given $(x_1, x_2, ..., x_n)$ partition the **n** observations into **k** $(\le n)$ sets $S = \{S_1, S_2, ..., S_k\}$ so as to minimize the within-cluster sum of squared distances
- ◆ The objective is to minimize:

Lloyd's algorithm for k-means

- ◆ Initialize k centers by picking k points randomly among all the points
- ◆ Repeat till convergence (or max iterations)
 - Assign each point to the nearest center (assignment step)

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} ||\mathbf{x} - \mu_i||^2$$

Estimate the mean of each group (update step)

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} ||\mathbf{x} - \mu_i||^2$$

k-means in action

k-means for image segmentation

Example codebook

Source: B. Leibe

Another codebook

Lecture outline

- Origin and motivation of the "bag of words" model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary clustering using k-means
 - ▶ Encoding methods hard vs. soft assignment
 - Spatial pooling pyramid representations

Assigning words to features

Assigning words to features

partition of space

large quantization error

Assigning words to features

soft assignment

partition of space

assign high weights to centers that are close

in practice non-zero to only k-nearest neighbors

 Assigning words to features soft assignment $\alpha_i \propto e^{-f(d(\mathbf{x}, \mathbf{c_i}))}$ Visual vocabulary similar features soft assignment 0.6 hard assignment partition of space

Encoding considerations

- What should be the size of the dictionary?
 - Too small: doesn't capture the variability of the data (underfitting)
 - Too large: too few points per cluster (overfitting)
- Speed of embedding
 - Exact nearest neighbor is slow if the dictionary is large
 - Approximate nearest neighbor techniques
 - Search trees organize data in a tree
 - Hashing create buckets in the feature space

Lecture outline

- Origin and motivation of the "bag of words" model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary clustering using k-means
 - ▶ Encoding methods hard vs. soft assignment
 - Spatial pooling pyramid representations

Spatial pyramids

pooling: sum embeddings of local features within a region

Spatial pyramids

pooling: sum embeddings of local features within a region

Same motivation as **SIFT** — keep coarse layout information

Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids

pooling: sum embeddings of local features within a region

Same motivation as **SIFT** — keep coarse layout information

Lazebnik, Schmid & Ponce (CVPR 2006)

Summary of hand-crafted features

- Two families of features that work well with simple classifiers
 - Histogram of oriented gradients captures overall shape
 - Bag of visual words captures local shape and texture

