
Subhransu Maji
CMPSCI 670: Computer Vision

Local features

October 4, 2016 

Subhransu Maji (UMass, Fall 16)CMPSCI 670

Motivation: panorama stitching
‣ We have two images – how do we combine them?

Why extract features?
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Step 1: extract features
Step 2: match features
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Motivation: panorama stitching
‣ We have two images – how do we combine them?

Why extract features?
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Step 1: extract features
Step 2: match features
Step 3: align images

Slide credit: L. Lazebnik
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Repeatability
‣ The same feature can be found in several images despite geometric and 

photometric transformations  
Saliency
‣ Each feature is distinctive 
Compactness and efficiency
‣ Many fewer features than image pixels 
Locality
‣ A feature occupies a relatively small area of the image; robust to clutter and 

occlusion

Characteristics of good features
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Feature points are used for:
‣ Image alignment  
‣ 3D reconstruction 
‣ Motion tracking 
‣ Robot navigation 
‣ Indexing and database retrieval 
‣ Object recognition

Applications  

6Slide credit: L. Lazebnik
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A hard feature matching problem
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NASA Mars Rover images
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NASA Mars Rover images 
with SIFT feature matches 

Figure by Noah Snavely

Answer below (look for tiny colored squares…)
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Detecting features
‣ Corners — translational invariance 
‣ Blobs — scale and translational invariance 
‣ Adding rotational invariance

Overview
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We should easily recognize the corners by looking through a small 
window
Shifting a window in any direction should give a large change in 
intensity at a corner

Corner detection: basic idea
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“edge”: 
no change along 
the edge 
direction

“corner”: 
significant 
change in all 
directions

“flat” region: 
no change in 
all directions
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Corner detection: mathematics
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Change in appearance of window W for the shift [u,v]:

E(3,2)

E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

I(x, y)
E(u, v)
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Corner detection: mathematics
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E(0,0)

Change in appearance of window W for the shift [u,v]:

E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

I(x, y)
E(u, v)
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Corner detection: mathematics

13

We want to find out how this function behaves for 
small shifts

Change in appearance of window W for the shift [u,v]:

E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

E(u, v)
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First-order Taylor approximation for small motions [u, v]:

Let’s plug this into E(u,v)

Corner detection: mathematics
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Corner detection: mathematics
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The quadratic approximation can be written as

where M is a second moment matrix computed from image 
derivatives:
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(the sums are over all the pixels in the window W)
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• The surface E(u,v) is locally approximated by a quadratic 
form. Let’s try to understand its shape.

• Specifically, in which directions does it have the smallest/
greatest change?

Interpreting the second moment matrix
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First, consider the axis-aligned case 
(gradients are either horizontal or vertical)

If either a or b is close to 0, then this is not a corner, so 
look for locations where both are large.

Interpreting the second moment matrix

17

!
"

#
$
%

&
=

b
a
0
0

!
!
!

"

#

$
$
$

%

&

=
∑∑

∑∑

yx
y

yx
yx

yx
yx

yx
x

III

III
M

,

2

,

,,

2

Subhransu Maji (UMass, Fall 16)CMPSCI 670

Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix
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This is the equation of an ellipse.
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Interpreting the second moment matrix
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This is the equation of an ellipse.
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λ

λ

The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R 

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

Diagonalization of M:
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Visualization of second moment matrices
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Visualization of second moment matrices
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Interpreting the eigenvalues
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λ1

λ2

“Corner” 
λ1 and λ2 are large,  
 λ1 ~ λ2; 
E increases in all 
directions

λ1 and λ2 are small;  
E is almost constant 
in all directions

“Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of M:
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Corner response function
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“Corner” 
R > 0

“Edge”  
R < 0

“Edge”  
R < 0

“Flat” 
region

|R| small

2
2121

2 )()(trace)det( λλαλλα +−=−= MMR
α: constant (0.04 to 0.06)

λ2

λ1
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1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around 

each pixel: 

The Harris corner detector

24

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  

!
!
!

"

#

$
$
$

%

&

=
∑∑

∑∑

yx
y

yx
yx

yx
yx

yx
x

IyxwIIyxw

IIyxwIyxw
M

,

2

,

,,

2

),(),(

),(),(



Subhransu Maji (UMass, Fall 16)CMPSCI 670

1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around 

each pixel 
3. Compute corner response function R

The Harris corner detector

25

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  
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Harris detector: steps

26
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Harris detector: steps
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Compute corner response R
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1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around 

each pixel 
3. Compute corner response function R 
4. Threshold R
5. Find local maxima of response function (non-maximum suppression)

The Harris corner detector

28

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  
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Harris Detector: Steps
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Find points with large corner response: R > threshold

Subhransu Maji (UMass, Fall 16)CMPSCI 670

Harris Detector: Steps
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Take only the points of local maxima of R
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Harris Detector: Steps
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Original corner detector paper
‣ C.Harris and M.Stephens, “A Combined Corner and Edge Detector.” 

Proceedings of the 4th Alvey Vision Conference,1988 
Other corner functions
‣ Can you think of other                        that work for finding corners?

Further thoughts and readings…

32
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Detecting features
‣ Corners — translational invariance 
‣ Blobs — scale and translational invariance 
‣ Adding rotational invariance

Overview

34
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We want to extract features with characteristic scale that matches 
the image transformation such as scaling and translation

Feature detection with scale selection
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Matching regions across scales

Source: L. Lazebnik Subhransu Maji (UMass, Fall 16)CMPSCI 670

Scaling

36

All points will be 
classified as 
edges

Corner

Corner detection is sensitive to the image scale
Source: L. Lazebnik
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Convolve the image with a “blob filter” at multiple scales 
Look for extrema (maxima or minima) of filter response in the 
resulting scale-space
This will give us a scale and location of the detected blob

Blob detection: basic idea
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Find maxima and minima of blob filter response in space and scale

Blob detection: basic idea

38

* =

maxima

minima

Source: N. Snavely

Subhransu Maji (UMass, Fall 16)CMPSCI 670

Laplacian of Gaussian: Circularly symmetric operator for blob 
detection in 2D

Blob filter

39
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Recall: sharpening filter

40

Gaussian
unit impulse

Laplacian of Gaussian

I = blurry(I) + sharp(I) sharp(I) = I � blurry(I)

= I ⇤ e� I ⇤ g�

= I ⇤ (e� g�)



Subhransu Maji (UMass, Fall 16)CMPSCI 670

Recall: edge detection

41Source: S. Seitz

f

g

f*g

signal

edge filter, e.g. 
Derivative of a  
Gaussian

edge response
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Edge detection using a Laplacian
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g
dx
d

f 2

2
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Edge

Second derivative 
of Gaussian  
(Laplacian)

Edge = zero crossing 
of second derivative

Source: S. Seitz
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edge = ripple
blob = superposition of two ripples

From edges to blobs

43

Spatial selection: the magnitude of the Laplacian 
response will achieve a maximum at the center of 
the blob, provided the scale of the Laplacian is 
“matched” to the scale of the blob

maximum

Source: L. Lazebnik Subhransu Maji (UMass, Fall 16)CMPSCI 670

We want to find the characteristic scale of the blob by convolving it 
with Laplacians at several scales and looking for the maximum 
response
However, Laplacian response decays as scale increases:

Scale selection

44

increasing σoriginal signal 
(radius=8)

Source: L. Lazebnik
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The response of a derivative of Gaussian filter to a perfect step edge 
decreases as σ increases

Scale normalization

45

πσ 2
1

Source: L. Lazebnik Subhransu Maji (UMass, Fall 16)CMPSCI 670

The response of a derivative of Gaussian filter to a perfect step edge 
decreases as σ increases
To keep response the same (scale-invariant), must multiply Gaussian 
derivative by σ 
Laplacian is the second Gaussian derivative, so it must be multiplied 
by σ2

Scale normalization

46
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Effect of scale normalization

47

Scale-normalized Laplacian response

Unnormalized Laplacian responseOriginal signal

maximum
Source: L. Lazebnik Subhransu Maji (UMass, Fall 16)CMPSCI 670

Laplacian of Gaussian: Circularly symmetric operator for blob 
detection in 2D

Blob detection in 2D
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At what scale does the Laplacian achieve a maximum 
response to a binary circle of radius r?

Scale selection

49

r

image Laplacian
Source: L. Lazebnik Subhransu Maji (UMass, Fall 16)CMPSCI 670

At what scale does the Laplacian achieve a maximum 
response to a binary circle of radius r?
To get maximum response, the zeros of the Laplacian have 
to be aligned with the circle
The Laplacian is given by (up to scale): 
 

Therefore, the maximum response occurs at 

Scale selection

50

r

image

222 2/)(222 )2( σσ yxeyx +−−+
.2/r=σ

circle

Laplacian

0

Source: L. Lazebnik
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We define the characteristic scale of a blob as the scale that 
produces peak of Laplacian response in the blob center

Characteristic scale

51

characteristic scale
T. Lindeberg (1998). "Feature detection with automatic scale 
selection." International Journal of Computer Vision 30 (2): pp 77--116. 

Source: L. Lazebnik Subhransu Maji (UMass, Fall 16)CMPSCI 670

1. Convolve image with scale-normalized Laplacian at several scales

Scale-space blob detector

52Source: L. Lazebnik
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Scale-space blob detector: Example
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Scale-space blob detector: Example

54
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1. Convolve image with scale-normalized Laplacian at several scales
2. Find maxima of squared Laplacian response in scale-space

Scale-space blob detector
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Scale-space blob detector: Example

56Source: L. Lazebnik
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Approximating the Laplacian with a difference of Gaussians:

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

(Laplacian)

(Difference of Gaussians)

Efficient implementation

57

Is the Laplacian separable?

222 2/)(222 )2( σσ yxeyx +−−+

Source: L. Lazebnik Subhransu Maji (UMass, Fall 16)CMPSCI 670

Efficient implementation

58

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 
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Scaled and rotated versions of the same neighborhood will 
give rise to blobs that are related by the same 
transformation
What to do if we want to compare the appearance of these 
image regions?

‣ Normalization: transform these regions into same-size 
circles 

‣ Problem: rotational ambiguity

From feature detection to description
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To assign a unique orientation to circular image windows:
‣ Create histogram of local gradient directions in the patch 
‣ Assign canonical orientation at peak of smoothed histogram

Eliminating rotation ambiguity

60

0 2 π

Source: L. Lazebnik
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Detected features with characteristic scales and orientations:

SIFT features

61

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Source: L. Lazebnik Subhransu Maji (UMass, Fall 16)CMPSCI 670

Detection is covariant:
 features(transform(image)) = transform(features(image)) 

Description is invariant:
 features(transform(image)) = features(image) 

From feature detection to description

62Source: L. Lazebnik

how should we represent the patches?


