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Linear filtering
‣ Mathematical model 
‣ Implementation details 
Applications
‣ De-noising 
‣ Sharpening 
‣ Edge detection 
Canny edge detector and recent advances

Overview
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How can we reduce noise in a photograph?

Motivation
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Let’s replace each pixel with a weighted average of its neighborhood
The weights are called the filter kernel 
What are the weights for the average of a 3x3 neighborhood?

Moving average
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“box filter”

Source: D. Lowe
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Let f be the image and g be the kernel. The output of filtering f with g 
denoted f *g is given by:

Filtering

5Source: F. Durand

f

(f ⇤ g)[m,n] =
X

k,l

f [m+ k, n+ l]g[k, l]

Filtering computes the correlation between the g and f at each location
Convolution is filtering with a flipped g (by notation)
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Linearity: filter(f1 + f2) = filter(f1) + filter(f2)
Shift invariance: same behavior regardless of pixel location: 
filter(shift(f)) = shift(filter(f))
Theoretical result: any linear shift-invariant operator can be 
represented as a convolution

Key properties

6
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Commutative: a * b = b * a
Conceptually no difference between filter and signal 

Associative: a * (b * c) = (a * b) * c
Often apply several filters one after another: (((a * b1) * b2) * b3) 
This is equivalent to applying one filter: a * (b1 * b2 * b3) 

Distributes over addition: a * (b + c) = (a * b) + (a * c)
Scalars factor out: ka * b = a * kb = k (a * b)
Identity: unit impulse e = […, 0, 0, 1, 0, 0, …], a * e = a

Properties in more detail

7
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What is the size of the output?
MATLAB: filter2(g, f, shape)
‣ shape = ‘full’: output size is sum of sizes of f and g
‣ shape = ‘same’: output size is same as f
‣ shape = ‘valid’: output size is difference of sizes of f and g 

Annoying details
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What about near the edge?
‣ the filter window falls off the edge of the image 
‣ need to extrapolate 
‣ methods: 

➡ clip filter (black) 
➡ wrap around 
➡ copy edge 
➡ reflect across edge

Annoying details

9Source: S. Marschner
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What about near the edge?
‣ the filter window falls off the edge of the image 
‣ need to extrapolate 
‣ methods (MATLAB): 

➡ clip filter (black):  imfilter(f, g, 0) 
➡ wrap around:  imfilter(f, g, ‘circular’) 
➡ copy edge:          imfilter(f, g, ‘replicate’) 
➡ reflect across edge:  imfilter(f, g, ‘symmetric’)

Annoying details

10Source: S. Marschner
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Practice with linear filters

11
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Source: D. Lowe
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Practice with linear filters
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Original Filtered 
(no change)

Source: D. Lowe



Subhransu Maji (UMass, Fall 16)CMPSCI 670

Practice with linear filters
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Source: D. Lowe
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Practice with linear filters
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000
100
000

Original Shifted left
By 1 pixel

Source: D. Lowe
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Practice with linear filters
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Source: D. Lowe
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Practice with linear filters
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Original
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111

Blur (with a
box filter)

Source: D. Lowe
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Practice with linear filters

17

Original
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000
020
000 - ?

(Note that filter sums to 1)

Source: D. Lowe
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Practice with linear filters

18

Original
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Sharpening filter: accentuates differences with local average

Source: D. Lowe
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What’s wrong with this picture?
What’s the solution?

Smoothing with box filter revisited

19Source: D. Forsyth
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What’s wrong with this picture?
What’s the solution?
‣ To eliminate edge effects, weight contribution of neighborhood 

pixels according to their closeness to the center

Smoothing with box filter revisited

20
“fuzzy blob”
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Constant factor at front makes volume sum to 1 (can be ignored 
when computing the filter values, as we should renormalize 
weights to sum to 1 in any case)

Gaussian Kernel

21

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Source: C. Rasmussen 
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Standard deviation σ: determines extent of smoothing

Gaussian kernel

22

σ = 2 with 30 x 30 
kernel

σ = 5 with 30 x 30 
kernel

Source: K. Grauman
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The Gaussian function has infinite support, but discrete filters use 
finite kernels

Choosing kernel width

23Source: K. Grauman



Subhransu Maji (UMass, Fall 16)CMPSCI 670

Rule of thumb: set filter half-width to about 3σ

Choosing kernel width

24
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Gaussian vs. box filtering

25
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Remove high-frequency components from the image (low-pass filter)
Convolution with self is another Gaussian
‣ So can smooth with small-σ kernel, repeat, and get same result as 

larger-σ kernel would have 
‣ Convolving two times with Gaussian kernel with std. dev. σ  

is same as convolving once with kernel with std. dev.  
Separable kernel
‣ Factors into product of two 1D Gaussians 
‣ Discrete example:

Gaussian filters

26
Source: K. Grauman
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Separability of the Gaussian filter

27
Source: D. Lowe
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Separability means that a 2D convolution can be reduced to two 1D 
convolutions (one among rows and one among columns)
What is the complexity of filtering an n×n image with an m×m kernel? 
‣ O(n2 m2) 
What if the kernel is separable?
‣ O(n2 m)

Why is separability useful?

28
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Salt and pepper noise: 
contains random occurrences 
of black and white pixels
Impulse noise: contains 
random occurrences of white 
pixels
Gaussian noise: variations in 
intensity drawn from a 
Gaussian normal distribution

Types of noise

29
Source: S. Seitz
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Mathematical model: sum of many independent factors
Good for small standard deviations
Assumption: independent, zero-mean noise

Gaussian noise

30
Source: M. Hebert
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Smoothing with larger standard deviations suppresses noise, but 
also blurs the image

Reducing Gaussian noise

31

noise
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Reducing salt-and-pepper noise

32

3x3 5x5 7x7

Gaussian smoothing with increasing standard deviation

What is wrong with these results?
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A median filter operates over a window by selecting the median 
intensity in the window  
 
 
 
 
 
 

Alternative idea: Median filtering

33

Question: is median filtering linear?
Source: K. Grauman
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What advantage does median filtering have over Gaussian filtering?

Median filter

34
Source: K. Grauman

Robustness to outliers
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MATLAB: medfilt2(image, [h w])

Salt-and-pepper noise Median filtered

Source: M. Hebert

Median filter

35
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Today’s lecture ends at 1:55pm
‣ Encourage you to attend 

Yoshua Bengio’s talk @ 2 

Administrivia
‣ Mini-project 1 due today 
‣ Mini-project 2 will be posted 

later today (due Oct 14)

Announcements

37



Subhransu Maji (UMass, Fall 16)CMPSCI 670

Sharpening

38
Source: D. Lowe
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What does blurring take away?

Sharpening

39

original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ α
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Unsharp mask filter

40

Gaussian
unit impulse

Laplacian of Gaussian

))1(()1()( gefgffgfff −+∗=∗−+=∗−+ αααα

image blurred 
image

unit impulse 
(identity)
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A. Oliva, A. Torralba, P.G. Schyns, “Hybrid Images,” SIGGRAPH 2006

Hybrid Images

41

Gaussian Filter

Laplacian Filter
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Edge detection

45

Winter in Kraków photographed by Marcin Ryczek
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Goal:  Identify sudden changes 
(discontinuities) in an image
‣ Intuitively, most semantic and shape 

information from the image can be 
encoded in the edges 

‣ More compact than pixels  

Ideal: artist’s line drawing (but artist is 
also using object-level knowledge)

Edge detection

46
Source: D. Lowe
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Edges are caused by a variety of factors:

Origin of edges

47

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz
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An edge is a place of rapid change in the image intensity function

Edge detection

48

image
intensity function 

(along horizontal scanline) first derivative

edges correspond to 
extrema of derivative
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For 2D function f(x,y), the partial derivative is:

For discrete data, we can approximate using finite 
differences:

To implement the above as convolution, what would be  
the associated filter?

Derivatives with convolution

49
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Partial derivatives of an image

50

Which one shows changes with respect to x?
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Other approximations of derivative filters exist:

Finite difference filters

51Source: K. Grauman
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The gradient points in the direction of most rapid increase 
in intensity 
 
 

The gradient of an image: 

 

Image gradient

52

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?
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Consider a single row or column of the image

Effects of noise

53

Where is the edge?
Source: S. Seitz
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Solution: smooth first

54

• To find edges, look for peaks in )( gf
dx
d

∗

f

g

f * g

)( gf
dx
d

∗

Source: S. Seitz
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Differentiation is convolution, and convolution is associative: 

This saves us one operation:

g
dx
d

fgf
dx
d

∗=∗ )(

Derivative theorem of convolution

55

g
dx
d

f ∗

f

g
dx
d

Source: S. Seitz
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1) Which one finds horizontal edges?
2) Are these filters separable?

Derivative of Gaussian filters

56

x-direction y-direction
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Smoothed derivative removes noise, but blurs edge. Also finds edges 
at different “scales”

1 pixel 3 pixels 7 pixels

Scale of Gaussian derivative filter

57
Source: D. Forsyth
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Smoothing filters
‣ Gaussian: remove “high-frequency” components;  

“low-pass” filter 
‣ Can the values of a smoothing filter be negative? 
‣ What should the values sum to? 

➡ One: constant regions are not affected by the filter 

 

Derivative filters
‣ Derivatives of Gaussian 
‣ Can the values of a derivative filter be negative? 
‣ What should the values sum to?  

➡ Zero: no response in constant regions 
‣ High absolute value at points of high contrast

Smoothing and derivative filters

58
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Filter image with derivative of Gaussian 
Find magnitude and orientation of gradient

Non-maximum suppression:
Thin wide “ridges” down to single pixel width

Linking and thresholding (hysteresis):
Define two thresholds: low and high
Use the high threshold to start edge curves and the low threshold 
to continue them 

Matlab:   edge(image, ‘canny’);

The Canny edge detector

59

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. 
Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 
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original image

The Canny edge detector

60Slide credit: Steve Seitz
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Check if pixel is local maximum along gradient direction, select single 
max across width of the edge
‣ requires checking interpolated pixels p and r

Thinning (non-maximum suppression)

61
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Thinning (non-maximum suppression)

62

thinning 
(non-maximum suppression)

Problem: 
pixels along 
this edge 
didn’t survive 
the 
thresholding
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Hysteresis thresholding

63

thresholding

How to turn 
these thick 
regions of 
the gradient 
into curves?
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Use a high threshold to start edge curves, and a low threshold to 
continue them.

Hysteresis thresholding

64Source: Steve Seitz
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Hysteresis thresholding

65

original image

high threshold 
(strong edges)

low threshold 
(weak edges)

hysteresis threshold

Source: L. Fei-Fei
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Learning to Detect Natural Image Boundaries Using Local Brightness, 
Color, and Texture Cues, D. Martin, C. Flowkes, J. Malik, PAMI 2004

Convert edge detection to classification problem: is there a vertical 
edge at the center of this patch? 
Compare average brightness, color, and texture of half-disks 
Do this for 8 different orientations

How do modern edge detectors work?

66
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How do modern edge detectors work?

67
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Learning to Detect Natural Image Boundaries Using Local Brightness, 
Color, and Texture Cues, D. Martin, C. Flowkes, J. Malik, PAMI 2004

Convert edge detection to classification problem: is there a vertical 
edge at the center of this patch? 
Compare average brightness, color, and texture of half-disks 
Do this for 8 different orientations
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Berkeley segmentation dataset

Berkeley segmentation database

68Berkeley segmentation database
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example boundary detections
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Hybrid images project
‣ http://cvcl.mit.edu/hybridimage.htm 
Canny edge detector
‣ www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf 
Bilateral filtering for image de-noising (and other application)
‣ http://people.csail.mit.edu/sparis/bf_course/ 
Berkeley segmentation dataset and other resources
‣ https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/

grouping/resources.html

Further thoughts and readings …

70


