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Overview

¢ Linear filtering
» Mathematical model
» Implementation details
+ Applications
» De-noising
» Sharpening
» Edge detection
+ Canny edge detector and recent advances
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Motivation

¢ How can we reduce noise in a photograph?
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Moving average

¢ |et’s replace each pixel with a weighted average of its neighborhood
¢ The weights are called the filter kernel
+ What are the weights for the average of a 3x3 neighborhood?
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“box filter”
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Filtering

¢ Let fbe the image and g be the kernel. The output of filtering f with g
denoted f *g is given by:

(f *g)lm,n] me+kn+l]g[k,l]

JqQ
JqQ

f

¢ Filtering computes the correlation between the g and f at each location
¢ Convolution is filtering with a flipped g (by notation)
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Key properties

o Linearity: filter(f, + £,) = filter(f,) + filter(f,)

+ Shift invariance: same behavior regardless of pixel location:
filter(shift(f)) = shift(filter(7))

¢ Theoretical result: any linear shift-invariant operator can be
represented as a convolution
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Properties in more detall

¢ Commutative:a*b=b" a
+ Conceptually no difference between filter and signal

¢ Associative:a*(b*c)=(a*b) *c
o Often apply several filters one after another: (((a* by) * by) * bs)
¢ This is equivalent to applying one filter: a * (b1 * b, * bs)

¢ Distributes over addition: a* (b+c)=(a* b) + (a* ¢)

¢ Scalars factorout: ka *b=a *kb =k (a™* b)

¢ |dentity: unitimpulse e=[...,0,0,1,0,0, ...], a*e=a
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Annoying details

What is the size of the output?

o MATLAB: filter2(g, f, shape)
> shape = ‘full’: output size is sum of sizes of fand g
> shape = ‘'same’; output size is same as f
> shape = ‘valid’: output size is difference of sizes of f and g

full same valid

g g

o g

CMPSCI 670 Subhransu Maji (UMass, Fall 16)




Annoying details

What about near the edge?

» the filter window falls off the edge of the image
» need to extrapolate

» methods:
= clip filter (black)
= wrap around
= copy edge
= reflect across edge

T —
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Annoying details

What about near the edge?

» the filter window falls off the edge of the image
» need to extrapolate

» methods (MATLAB):
= clip filter (black): imfilter(f, g, O)
= wrap around: imfilter(f, g, ‘circular’)
= copy edge: imfilter(f, g, ‘replicate’)
= reflect across edge:  imfilter(f, g, ‘'symmetric’)
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Practice with linear filters

o
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Original
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Practice with linear filters

Original Filtered
(no change)
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Practice with linear filters
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Original
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Practice with linear filters

Original Shifted left
By 1 pixel
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Practice with linear filters

1 1 ‘)
ol ‘
1

Original
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Practice with linear filters

Q|

Original Blur (with a
box filter)
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Practice with linear filters
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(Note that filter sums to 1)

Original
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Practice with linear filters

0/0]/0 1”?
020-5’ 1
0/0]0 1 1

Original

Sharpening filter: accentuates differences with local average
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Smoothing with box filter revisited

¢ What’s wrong with this picture?
¢ What’s the solution?
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Smoothing with box filter revisited

¢ What’s wrong with this picture?

¢ What’s the solution?

» To eliminate edge eftects, weight contribution of neighborhood
pixels according to their closeness to the center

“fuzzy blob”
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(Gaussian Kernel

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5,0=1

+ Constant factor at front makes volume sum to 1 (can be ignored
when computing the filter values, as we should renormalize
weights to sum to 1 in any case)

Source: C. Rasmussen
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(Gaussian kernel

o = 2 with 30 x 30 o =5 with 30 x 30
kernel kernel

¢ Standard deviation o: determines extent of smoothing
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Choosing kernel width

¢ The Gaussian function has infinite support, but discrete filters use

finite kernels
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Choosing kernel width

¢ Rule of thumb: set filter half-width to about 3o

Effect of o
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Gaussian vs. box filtering
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(Gaussian filters

¢ Remove high-frequency components from the image (low-pass filter)

¢ Convolution with self is another Gaussian

» SO can smooth with small-c kernel, repeat, and get same result as
larger-c kernel would have

» Convolving two times with Gaussian kernel with std. dev. o
IS same as convolving once with kernel with std. dev. o2

¢ Separable kernel

» Factors into product of two 1D Gaussians
» Discrete example:

1 2 171 [17
2 4 2|=2]1 2 1]
12 1| |1

Source: K. Grauman
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Separability of the Gaussian filter

Xty
G, (x _ 20°
Xy) = e 2
1 X2 1 }’2
A 2 A 2
= exp 20 exp 20
( 270 P ) V 2To P

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe
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Why is separability useful?

¢ Separability means that a 2D convolution can be reduced to two 1D
convolutions (one among rows and one among columns)

¢ What is the complexity of filtering an nxn image with an mxm kernel?
» O(N2 m2)
¢ What if the kernel is separable?

» O(n2m)

CMPSCI 670 Subhransu Maiji (UMass, Fall 16)
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Types of noise
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Impulse noise

Gaussian noise

CMPSCI 670

+ Salt and pepper noise:

contains random occurrences
of black and white pixels

¢+ Impulse noise: contains
random occurrences of white
pixels

¢ Gaussian noise: variations in
intensity drawn from a
Gaussian normal distribution

Source: S. Seitz
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(Gaussian noise

+ Mathematical model: sum of many independent factors
¢ Good for small standard deviations
¢ Assumption: independent, zero-mean noise

Image
Noise

Ide_al Image Noise process Gaussian i.i.d. ("white") noise:
fx,y)= f(z,y) + n(z,y) n(z,y) ~ N(u, o)

Source: M. Hebert
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Reducing Gaussian noise

noise 0=0.05 G5=0.1

o0=1 pixel

0=2 pixels

Smoothing with larger standard deviations suppresses noise, but

also blurs the image
CMPSCI 670 Subhransu Maji (UMass, Fall 16)
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Reducing salt-and-pepper noise

Gaussian smoothing with increasing standard deviation

What is wrong with these results?

CMPSCI 670 Subhransu Maji (UMass, Fall 16)
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Alternative idea: Median filtering

+ A median filter operates over a window by selecting the median
Intensity in the window
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Question: is median filtering linear?
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Median filter

+ What advantage does median filtering have over Gaussian filtering?

filters have width 5 :

Robustness to outliers---f----- > o .
INPUT
Ceessenns o MEDIAN
MEAN

Source: K. Grauman
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Median filter
-and-pepper noise

Sal

Median filtered
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MATLAB: medfilt2(image, [h w]) Source: M. Hebert
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Linear filtering

Subhransu Maiji

CMPSCI 670: Computer Vision
September 29, 2016
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Announcements

+ Today’s lecture ends at 1:55pm

» Encourage you to attend
Yoshua Bengio’s talk @ 2

T

¢ Administrivia
» Mini-project 1 due today

» Mini-project 2 will be postead
later today (due Oct 14)

CMPSCI 670 Subhransu Maji (UMass, Fall 16)
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The Center for Data Science and the College of Natural Sciences are pleased
to announce the inaugural event of the Statistical and Computational Data
Science Distinguished Lecture Series.

Yoshua Bengio
Professor of Computer Science and Operations Research
Universite de Montreal
“Improving the memory capability of recurrent networks”

2:00pm, Thursday, September 29, 2016
CS 150/151
(Reception at 1:40 pm)

Abstract: Since the 90s we have known about the fundamental challenge in
training a parametrized dynamical system such as a recurrent networks to
capture long-term dependencies. The notion of stable memory is crucial in
understanding this issue, and is behind the LSTM and GRU architectures, as
well as the recent work on networks with an external memory. We present
several new ideas exploring how to further expand the reach of recurrent
architectures, improve their training and scale up their memory, in particular to
model language-related data and better capture semantics for question
answering, machine translation and dialogue.
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Sharpening

before after

Source: D. Lowe
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Sharpening

What does blurring take away?

+ d

CMPSCI 670 Subhransu Maji

(UMass, Fall 16)
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Unsharp mask filter

CMPSCI 670

unit impulse

fro(f-frg)=(+a)f -a fxg=f*(l+a)e-g)

|

image blurred unit impulse

image (identity)
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Gaussian Laplacian of Gaussian
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Hybrid Images

Gaussian Filter

Laplacian Filter

A. QOliva, A. Torralba, P.G. Schyns, “Hybrid Images,” SIGGRAPH 2006
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Changing expression

ej

Surprised




motorcycle and bicycle © 2006 Antonio Torralba and Aude Oliva
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Edge detection

Winter in Krakéw photographed by Marcin Ryczek

CMPSCI 670 Subhransu Maji (UMass, Fall 16)
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Edge detection

¢ Goal: Identify sudden changes
(discontinuities) in an image
» Intuitively, most semantic and shape

information from the image can be
encoded in the edges

» More compact than pixels

¢ |deal: artist’s line drawing (but artist is
also using object-level knowledge)

CMPSCI 670 Subhransu Maiji (UMass, Fall 16)

Source: D. Lowe
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Origin of edges

Edges are caused by a variety of factors:

% surface normal discontinuity

N < depth discontinuity
\_____..//_(\

: < surface color discontinuity
ey ™ < illumination discontinuity
N~

CMPSCI 670 Subhransu Maji (UMass, Fall 16) Source: Steve Seitz



Edge detection

¢ An edge is a place of rapid change in the image intensity function

image

intensity function
(along horizontal scanline)

first derivative

CMPSCI 670

Subhransu Maiji (UMass, Fall 16)

edges correspond to
extrema of derivative
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Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

Gf(x,y) =1imf(x+89y)_f(x9y)
0x £ =0 €

For discrete data, we can approximate using finite
differences:

af(xay) zf(x'l'lay)_f(xay)
0X 1

To implement the above as convolution, what would be
the associated filter?

Source: K. Grauman
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Partial derivatives of an image

Which one shows changes with respect to x?

CMPSCI 670 Subhransu Maji (UMass, Fall 16)
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Finite difference filters

Other approximations of derivative filters exist:

0]1 1 1] 1

Prewitt: M, = 0]1 s M, = 0] o] 0
1ol -1 -1

-1[0]1 1] 2] 1

Sobel: M, = 2 s M, = 0
SHIEEE -1 [-2]-1

- K.
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Image gradient

The gradient of an image:

The gradient points in the direction of most rapid increase
In intensity
« How does this direction relate to the direction of the edge?

The gradient direction is givenby 4 = tan—! <8f/af)

The edge strength is given by the gradient magnitude

of 9f\2
| ‘ vf | | — \/( 8 ) ( ({9:]; ) Source: Steve Seitz
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Effects of noise

Consider a single row or column of the image

f(x)

| | | | | | | | |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

dwf (@)

| | 1 | | 1 | | 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?
Source: S. Seitz
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Solution: smooth first

f*g

d
a(f*g)

« To find edges, look for peaks in %(f*g)

CMPSCI 670

. Kernel
Convolution orme

Differentiation

Subhransu Maiji (UMass, Fall 16)

Sigma = 50
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Source: S. Seig4



Derivative theorem of convolution

¢ Differentiation is convolution, and convolution is associative:

d d
a(f*g)=f*$g

¢ This saves us one operation:

Sigma = 50
T

.................................................

~
Signal

i | i | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

...............................................................................................

oQ
Kernel

1 1 1 | 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

+%
0Q
Convolution

i | I 1 I | I I f
0 200 400 600 800 1000 1200 1400 1600 1800 2000
CMPSCI 670 supnransu viajl (Uiviass, Fail 1o)
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Derivative of Gaussian filters

015

x-direction y—dli rection

1) Which one finds horizontal edges?

2) Are these filters separable?
CMPSCI 670 Subhransu Maji (UMass, Fall 16)
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Scale of Gaussian derivative filter

1 pixel 3 pixels [ pixels

Smoothed derivative removes noise, but blurs edge. Also finds edges
at different “scales”

Source: D. Forsyth
CMPSCI 670 Subhransu Maji (UMass, Fall 16) 57



Smoothing and derivative filters

Smoothing filters

» Gaussian: remove “high-frequency” components;
“low-pass” filter

» Can the values of a smoothing filter be negative?

» What should the values sum to?
= One: constant regions are not affected by the filter

Derivative filters
» Derivatives of Gaussian
» Can the values of a derivative filter be negative?

» What should the values sum to?
= Zero: no response in constant regions

» High absolute value at points of high contrast

CMPSCI 670 Subhransu Maiji (UMass, Fall 16)
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The Canny edge detector

Filter image with derivative of Gaussian
Find magnitude and orientation of gradient

Non-maximum suppression:
Thin wide “ridges” down to single pixel width

Linking and thresholding (hysteresis):
Define two thresholds: low and high

Use the high threshold to start edge curves and the low threshold
to continue them

Matlab: edge (image, ‘canny’);

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

CMPSCI 670 Subhransu Maji (UMass, Fall 16)
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The Canny edge detector

original image

CMPSCI 670 Subhransu Maji (UMass, Fall 16) Slide credit: Steve Seitz g0



Thinning (non-maximum suppression)

® ® ® o o
P
@ ® @
_ q
Gradient /
® ® O o ®
r
® @ ® ®

Check if pixel is local maximum along gradient direction, select single
max across width of the edge

» requires checking interpolated pixels p and r
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Thinning (non-maximum suppression)

CMPSCI 670

thinning

(non-maximum suppression)
Subhransu Maiji (UMass, Fall 16)

Problem:
pixels along
this edge
didn’t survive

| the

thresholding
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Hysteresis thresholding

1
Lﬁ-ﬁ;;
> {
v i(t)
‘ ====—==%--Threshold
L n " t
A4 \

Edge

CMPSCI 670

thresholding

Subhransu Maiji (UMass, Fall 16)

How to turn
these thick
regions of
the gradient
into curves?
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Hysteresis thresholding

Use a high threshold to start edge curves, and a low threshold to
continue them.

CMPSCI 670 Subhransu Maji (UMass, Fall 16) Source: Steve Seitz g4



Hysteresis thresholding

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Source: L. Fei-Fei
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How do modern edge detectors work?

¢ Learning to Detect Natural Image Boundaries Using Local Brightness,
Color, and Texture Cues, D. Martin, C. Flowkes, J. Malik, PAMI 2004

* Convert edge detection to classification problem: is there a vertical
edge at the center of this patch?

* Compare average brightness, color, and texture of half-disks
* Do this for 8 different orientations

o s e,

Image  Intensity OE OE BG CG TG TG

MR

v oo s W oL W |

non-boundaries
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How do modern edge detectors work?

¢ Learning to Detect Natural Image Boundaries Using Local Brightness,
Color, and Texture Cues, D. Martin, C. Flowkes, J. Malik, PAMI 2004

* Convert edge detection to classification problem: is there a vertical
edge at the center of this patch?

* Compare average brightness, color, and texture of half-disks
* Do this for 8 different orientations

o s i

Image  Intensity OE OE BG TG TG

1

IE
—F =
S
o

C

boundaries

s

o
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Berkeley segmentation database
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exampﬁle boundary detections

Fall 16)

UMass

(

Subhransu Maji
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Further thoughts and readings ...

+ Hybrid images project
» http://cvcl.mit.edu/hybridimage.htm
+ Canny edge detector
» www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf
+ Bilateral filtering for image de-noising (and other application)
» hittp://people.csail.mit.edu/sparis/bf course/
+ Berkeley segmentation dataset and other resources

» https://www?2.eecs.berkeley.edu/Research/Projects/CS/vision/
rouping/resources.html
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