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Light and color
‣ Spectral basis of light 
‣ Color perception in the human eye 
‣ Tristimulus theory and color spaces 
‣ Color phenomena 
‣ Applications 
Photometry
‣ Light transport 
‣ Interaction of light with surfaces 
‣ Shape from shading

Overview
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“Color is the result of interaction 
between light in the environment 
and our visual system” 
“Color is a psychological property 
of our visual experiences when we 
look at objects and lights, not a 
physical property of those objects 
or lights” — S. Palmer, Vision 
Science: Photons to 
Phenomenology

What is color?

4
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Newton’s theory of light

5

Newton's sketch of his crucial 
experiment in which light from 
the sun is refracted through a 
pr ism. One color is then 
refracted through a second 
prism to show that it undergoes 
no further change. Light is then 
shown to be composed of the 
colors refracted in the second 
prisms. 
Image credit: Warden and Fellows
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The electromagnetic spectrum

6

Human Luminance Sensitivity Function 
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The Physics of Light 

Any source of light can be completely described!
physically by its spectrum: the amount of energy emitted !
(per time unit) at each wavelength 400 - 700 nm.!

© Stephen E. Palmer, 2002 
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Spectra of Light Sources!
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Some examples of the spectra of light sources!

© Stephen E. Palmer, 2002 
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Reflectance Spectra of Surfaces!

Some examples of the reflectance spectra of surfaces!

Wavelength (nm)!
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400          700!

Yellow!

400          700!

Blue!

400          700!

Purple!

400          700!

© Stephen E. Palmer, 2002 
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Reflected color is the result of 
interaction between the light 
source spectrum and the 
reflection surface reflectance

Interaction of light and surfaces

10
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What is the observed color of any surface under monochromatic light?

Interaction of light and surfaces

11

Room for one color, Olafur Eliasson
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The human eye is a sophisticated camera!
‣ Lens - changes the shape by using ciliary muscles (to focus on 

objects at different distances) 
‣ Pupil - the hole (aperture) whose size is controlled by iris 
‣ Iris - colored annulus with radial muscles 
‣ Retina - photoreceptor cells

The eye

12Slide by S. Seitz
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Rods are responsible for intensity, cones for color perception
Rods and cones are non-uniformly distributed on the retina
‣ Fovea - Small region (1 or 2°) at the center of the visual field 

containing the highest density of cones - and no rods 
There are about 5 million cones and 100 million rods in each eye

Rods and cones, fovea

13

pigment 
molecules

Slide by S. Seitz
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√

14

Demonstration of visual acuity 

With one eye shut, at the right distance, all of these letters 
should appear equally legible (Glassner, 1.7). 

Slide by Steve Seitz 
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Blind spot 

With left eye shut, look at the cross on the left.  At the right 
distance, the circle on the right should disappear (Glassner, 1.8). 

Slide by Steve Seitz 
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Rod/cone sensitivity

16
Why can’t we read in the dark?

Slide by A. Efros
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Three kinds of cones:!

Physiology of Color Vision!

•    Ratio of L to M to S cones: approx. 10:5:1 
•    Almost no S cones in the center of the fovea 
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“M” and “L” pigments are encoded on the X-chromosome
‣ That’s why men are more likely to be color blind 
‣ “L” gene has high variation, so some women may be tetra-chromatic 
Color blindness
‣ Red-green color blindness — mutation in L or M photoreceptors; 

difficulty in discriminating red and green hues 
‣ Blue-yellow color blindness — mutation in S photoreceptors; 

difficulty in discriminating bluish and greenish hues, yellowish and 
reddish hues 

Some animals have one (night animals), two (e.g. dogs), four (fish, 
birds), five (pigeons, some reptiles/amphibians), or even 12 (mantis 
shrimp) types of cones 

Physiology of color vision: fun facts

18
http://en.wikipedia.org/wiki/Color_vision
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Rods and cones act as filters on the spectrum
‣ To get the output of a filter, multiply its response curve by the 

spectrum, integrate over all wavelengths 
• Each cone yields one number 

‣ How can we represent an entire spectrum with 3 numbers? 
‣ We can’t! A lot of the information is lost 

• As a result, two different spectra may appear indistinguishable.  
• Such spectra are known as metamers

Color perception

20

Wavelength 

Power         
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Spectra of some real-world surfaces

21

metamers 
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How insects see

22

visible light image simulated bee vision
http://photographyoftheinvisibleworld.blogspot.de/

Copyright Dr. Klaus Schmitt

http://fieldguidetohummingbirds.wordpress.com/2008/11/11/do-we-see-what-bees-see/
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We would like to understand which spectra produce the same color 
sensation in people under similar viewing conditions 
Color matching experiments

Standardizing color experience

23

Wandell, Foundations of Vision, 1995
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Color matching experiment 1

24Source: W. Freeman
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Color matching experiment 1

25

p1     p2      p3 
Source: W. Freeman
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Color matching experiment 1

26

p1     p2      p3 
Source: W. Freeman
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Color matching experiment 1

27

p1     p2      p3 

The primary color 
amounts needed for 
a match

Source: W. Freeman
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Color matching experiment 2

28Source: W. Freeman
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Color matching experiment 2

29

p1     p2      p3 
Source: W. Freeman
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Color matching experiment 2

30

p1     p2      p3 
Source: W. Freeman



Subhransu Maji (UMass, Fall 16)CMPSCI 670

Color matching experiment 2

31

p1     p2      p3 p1     p2      p3 

We say a 
“negative” 
amount of p2 was 
needed to make 
the match, 
because we 
added it to the 
test color’s side.

The primary color 
amounts needed for 
a match:

p1     p2      p3 

Source: W. Freeman
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In color matching experiments, most people can match any given light 
with three primaries
‣ Primaries must be independent  
For the same light and same primaries, most people select the same 
weights
‣ Exception: color blindness 
Trichromatic color theory
‣ Three numbers seem to be sufficient for encoding color 
‣ Dates back to 18th century (Thomas Young)

Trichromacy

32
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Color matching appears to be linear
If two test lights can be matched with the same set of weights, then 
they match each other: 
‣ Suppose A = u1 P1 + u2 P2 + u3 P3 and B = u1 P1 + u2 P2 + u3 P3. Then A 

= B. 
If we mix two test lights, then mixing the matches will match the result:
‣ Suppose A = u1 P1 + u2 P2 + u3 P3 and B = v1 P1 + v2 P2 + v3 P3. Then A 

+ B = (u1+v1) P1 + (u2+v2) P2 + (u3+v3) P3. 
If we scale the test light, then the matches get scaled by the same 
amount:
‣ Suppose A = u1 P1 + u2 P2 + u3 P3.  

Then kA = (ku1) P1 + (ku2) P2 + (ku3) P3.

Grassman’s Laws (1853)

33
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Defined by a choice of three primaries  
The coordinates of a color are given by the weights of the primaries 
used to match it

Linear color spaces

34

mixing two lights produces 
colors that lie along a straight 

line in color space

mixing three lights produces  
colors that lie within the triangle  

they define in color space
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How to compute the weights of the primaries to match any spectral 
signal?

Linear color spaces

35

p1              p2                p3 

?
Given: a choice of 
three primaries and a 
target color signal

Find: weights of the 
primaries needed to 
match the color signal

p1      p2       p3 
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Using color matching functions to predict the primary match to a new 
spectral signal

Color matching function: primary color

36
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Color matching functions: any color

37
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Primaries are monochromatic lights (for monitors, they correspond to 
the three types of phosphors)
Subtractive matching required for some wavelengths

RGB space

38

RGB matching functionsRGB primaries
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Cone responses to RGB signals

39Wandell, Foundations of Vision, 1995

Comparison of RGB matching functions with best linear transformation of cone responses
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Primaries are “imaginary”, but matching functions are positive 
everywhere
Y parameter corresponds to brightness or luminance of a color
Z corresponds to blue simulation

Linear color spaces: CIE XYZ

40

Matching functions

http://en.wikipedia.org/wiki/CIE_1931_color_space
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Unfortunately, differences in x,y coordinates do not reflect 
perceptual color differences
CIE u’v’ is a transform of x,y to make the ellipses more 
uniform

Uniform color spaces

41

McAdam ellipses: Just 
noticeable differences in color

xyz lu’v’
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Perceptually meaningful dimensions:  
Hue, Saturation, Value (Intensity)
RGB cube on its vertex

Nonlinear color spaces: HSV

42



Subhransu Maji (UMass, Fall 16)CMPSCI 670

Some early attempts in color spaces

43

Philipp Otto Runge’s Farbenkugel 
(color sphere), 1810

Munsell’s balanced color sphere, 
1900, from A Color Notation, 1905
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No office hours today
‣ New office hours: Tuesdays 10am-11am 
‣ Email me if you want to meet this week 

Homework 2 posted
‣ Due on Friday 

In general, I’ll try to post a homework each Friday which will be due 
the following Friday

Administrivia

45
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Last lecture:
‣ Physics of light 

➡ Light can be described by its spectrum 
‣ Color perception in the human eye 

➡ Rods and cones 
‣ Tristimulus theory 

➡ Three primary colors are sufficient to match light of any color 
➡ Linearity of light  

Today
‣ Color phenomena 
‣ Photometry 

➡ Interaction of light with surfaces 
➡ Shape from shading

Recap of the last lecture

46
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The ability of the human visual system to perceive color relatively 
constant despite changes in illumination conditions

Color constancy

47

Color constancy causes A and B to look 
different although the pixel values are the 

same

We perceive the same color both in  
shadow and sunlight

http://en.wikipedia.org/wiki/Color_constancy
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Reflected color is the result of 
interaction between the light 
source spectrum and the 
reflection surface reflectance

Recap: interaction of light and surfaces

48
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Color constancy

49

white and gold 
or 

blue and black

light is blue so white is 
tinted blue and gold doesn’t 

really change

light is yellow, so black 
reflects the yellow and the 

blue is unaffected
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Color constancy

50

http://xkcd.com/1492/
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Color constancy

51

http://xkcd.com/1492/
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The visual system changes its sensitivity depending on the 
luminances prevailing in the visual field
‣ The exact mechanism is poorly understood 
Adapting to different brightness levels
‣ Changing the size of the iris opening (i.e., the aperture) changes the 

amount of light that can enter the eye  
‣ Think of walking into a building from full sunshine 
Adapting to different color temperature
‣ The receptive cells on the retina change their sensitivity  
‣ For example: if there is an increased amount of red light, the cells 

receptive to red decrease their sensitivity until the scene looks white 
again  

‣ We actually adapt better in brighter scenes: This is why candlelit scenes 
still look yellow

Chromatic adaptation

52
http://www.schorsch.com/kbase/glossary/adaptation.html
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When looking at a picture on screen or print, our eyes are 
adapted to the illuminant of the room, not to that of the scene 
in the picture
When the white balance is not correct, the picture will have 
an unnatural color “cast”

White balance

53
http://www.cambridgeincolour.com/tutorials/white-balance.htm

incorrect white balance correct white balance
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Film cameras: 
‣ Different types of film or different filters for different illumination 

conditions 
Digital cameras: 
‣ Automatic white balance 
‣ White balance settings corresponding to  

several common illuminants 
‣ Custom white balance using a reference  

object

White balance

54
http://www.cambridgeincolour.com/tutorials/white-balance.htm
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Von Kries adaptation
‣ Multiply each channel by a gain factor 

Best way: gray card
‣ Take a picture of a neutral object  (white or gray) 
‣ Deduce the weight of each channel 

➡ If the object is recoded as rw, gw, bw use weights 1/rw, 1/gw, 1/bw

White balance

55Source: L. Lazebnik
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Without gray cards: we need to “guess” which pixels correspond to 
white objects
Gray world assumption
‣ The image average rave, gave, bave is gray 
‣ Use weights 1/rave, 1/gave, 1/bave 
Brightest pixel assumption
‣ Highlights usually have the color of the light source  
‣ Use weights inversely proportional to the values of the brightest pixels 
Gamut mapping
‣ Gamut: convex hull of all pixel colors in an image 
‣ Find the transformation that matches the gamut of the image to the 

gamut of a “typical” image under white light 
Use image statistics, learning techniques

White balance

56Source: L. Lazebnik
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Color and language

57

Evolution of color terms across ~20 diverse languages

B. Berlin and P. Kay, Basic Color Terms: Their Universality and Evolution (1969)
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Grayscale to color

58
https://github.com/richzhang/colorization
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Color matching applet
‣ http://graphics.stanford.edu/courses/cs178/applets/

colormatching.html 
B. Berlin and P. Kay, Basic Color Terms: Their Universality and 
Evolution (1969) 
‣ It is a book. The library has some copies. 
D.A. Forsyth, A novel algorithm for color constancy
‣ Gamut based approach  
‣ http://luthuli.cs.uiuc.edu/~daf/papers/colorconst.pdf 
Lots of recent work on grayscale to color using CNNs

Further readings and thoughts …

59
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Computer Vision - A Modern Approach 
Set:  Radiometry 

Slides by D.A. Forsyth

Questions:
‣ how “bright” will surfaces be?  
‣ what is “brightness”? 

➡ measuring light 
➡ interactions between light and 

surfaces 
Core idea - think about light arriving 
at a surface around any point is a 
hemisphere of directions
Simplest problems can be dealt with 
by reasoning about this hemisphere

Radiometry

60

# d#
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Set:  Radiometry 

Slides by D.A. Forsyth

Lambert’s wall

What is the distribution 
of brightness on the ground?



Computer Vision - A Modern Approach 
Set:  Radiometry 

Slides by D.A. Forsyth

More complex wall



Computer Vision - A Modern Approach 
Set:  Radiometry 

Slides by D.A. Forsyth

More complex wall
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What happens when a light ray hits a point on an 
object?
‣ Some of the light gets absorbed 
➡ converted to other forms of energy (e.g., heat) 

‣ Some gets transmitted through the object 
➡ possibly bent, through refraction 
➡ or scattered inside the object (subsurface scattering) 

‣ Some gets reflected 
➡ possibly in multiple directions at once 

‣ Really complicated things can happen 
➡ fluorescence

Light at surfaces

64Source: Steve Seitz



Fluorescence
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Bidirectional reflectance distribution function (BRDF) 
‣ How bright a surface appears when viewed from one 

direction when light falls on it from another 
‣ Definition: ratio of the radiance in the emitted  

direction  to irradiance in the incident direction

Modeling surface reflectance

66Source: Steve Seitz

Simplifying assumptions
locality, no fluorescence,  
does not generate light 



Gonioreflectometer

The University of Virginia spherical gantry, an example of a 
modern image-based gonioreflectometer



BRDFs can be incredibly complicated…
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Computer Vision - A Modern Approach 
Set:  Radiometry 

Slides by D.A. Forsyth

BRDF is a very general notion
‣ some surfaces need it (underside of a CD; tiger eye; etc) 
‣ very hard to measure  

➡ illuminate from one direction, view from another, repeat 
‣ very unstable 

➡ minor surface damage can change the BRDF 
➡ e.g.  ridges of oil left by contact with the skin can act as lenses 

‣ for many surfaces, light leaving the surface is largely independent 
of exit angle 
➡  surface roughness is one source of this property

Suppressing the angles in the BRDF

69
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Light is reflected equally in all directions 
‣ Dull, matte surfaces like chalk or cotton cloth 
‣ Microfacets scatter incoming light randomly 
‣ Effect is that light is reflected (approximately) 

equally in all directions 
Brightness of the surface depends on  
the incidence of illumination

Special cases: Diffuse reflection

70

brighter darker
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Diffuse reflection: Lambert’s law

71

θρ

ρ

cos

)(

S
SN

=

⋅=BN
S

B: radiosity (total power leaving the 
surface per unit area) 
ρ: albedo (fraction of incident irradiance 
reflected by the surface) 
N: unit normal 
S: source vector (magnitude 
proportional to intensity of the source)

θ
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Radiation arriving along a source 
direction leaves along the specular 
direction (source direction reflected 
about normal)
Some fraction is absorbed, some 
reflected
On real surfaces, energy usually 
goes into a lobe of directions
Phong model: reflected energy falls 
of with
Lambertian + specular model: sum 
of diffuse and specular term
‣ a reasonable approximation to lot 

of surfaces we see

Specular reflection

72

( )δθncos
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Specular reflection

73

Moving the light source

Changing the exponent



Role of specularity in computer vision
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Can we reconstruct the shape of an object based on shading cues?

Photometric stereo (shape from shading)

76

Luca della Robbia, 
Cantoria, 1438
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Assume:
‣ A Lambertian object 
‣ A local shading model (each point on a surface receives light only from 

sources visible at that point) 
‣ A set of known light source directions 
‣ A set of pictures of an object, obtained in exactly the same camera/

object configuration but using different sources 
‣ Orthographic projection 
Goal: reconstruct object shape and albedo

Photometric stereo

77

Sn

???S1

S2

F&P 2nd ed., sec. 2.2.4
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Surface model: Monge patch

78F&P 2nd ed., sec. 2.2.4

z = f(x,y)
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Known: source vectors Sj and pixel values Ij(x,y) 
Unknown: surface normal N(x,y) and albedo ρ(x,y)  
Assume that the response function of the camera is a linear scaling 
by a factor of k  
Lambert’s law:

Image model

79F&P 2nd ed., sec. 2.2.4
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Obtain least-squares solution for g(x,y) (which we defined as N(x,y) 
ρ(x,y))
Since N(x,y) is the unit normal, ρ(x,y) is given by the magnitude of 
g(x,y)  
Finally, N(x,y) = g(x,y) / ρ(x,y)

Least squares problem

80
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•   For each pixel, set up a linear system:

F&P 2nd ed., sec. 2.2.4
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Example

81

Recovered albedo Recovered normal field

F&P 2nd ed., sec. 2.2.4
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Recall the surface is written 
as

This means the normal has 
the form:

Recovering a surface from normals

82

If we write the estimated 
vector g as 

Then we obtain values for 
the partial derivatives of the 
surface:
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Integrability: for the surface f  
to exist, the mixed second 
partial derivatives must be 
equal:

Recovering a surface from normals

83

We can now recover the 
surface height at any point 
by integration along some 
path, e.g.

(for robustness, should 
take integrals over many 
different paths and 
average the results)

(in practice, they should 
at least be similar)
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F&P 2nd ed., sec. 2.2.4
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Surface recovered by integration

84F&P 2nd ed., sec. 2.2.4
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Works for more complicated surfaces

85
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Orthographic camera model
Simplistic reflectance and lighting model
No shadows
No inter-reflections
No missing data
Integration is tricky

Limitations

86
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Application
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https://www.youtube.com/watch?v=S7gXih4XS7A
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Finding the direction of the light source
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!!!!

I(x,y) = N(x,y) ·S(x,y) + A

Full 3D case:

For points on the occluding contour:

P. Nillius and J.-O. Eklundh, “Automatic estimation of the projected light source direction,” 
CVPR 2001
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Finding the direction of the light source
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P. Nillius and J.-O. Eklundh, “Automatic estimation of the projected light source direction,” CVPR 2001
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Application: Detecting composite photos

90

Fake photo

Real photo

M. K. Johnson and H. Farid, Exposing Digital Forgeries by Detecting Inconsistencies in 
Lighting,  ACM Multimedia and Security Workshop, 2005.
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More readings and thoughts …
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• People can perceive reflectance 

• Surface reflectance estimation and natural illumination statistics,R.O. Dror, 
E.H. Adelson, and A.S. Willsky, Workshop on Statistical and Computational 
Theories of Vision 2001 

• HDR photography 

• Recovering High Dynamic Range Radiance Maps from Photographs, Paul 
E. Devebec and Jitendra Malik, SIGGRAPH 1997 


