Class overview and intro to CV

Subhransu Maji

CMPSCI 670: Computer Vision

September 6, 2016

Course background

- What is the course about?
 - Physics and geometry of image formation
 - Understand how cameras work (and design new sensors)
 - Finding (and exploiting) patterns in visual data
 - Examples: object detection, image classification
 - It is hard, ad-hoc. There are few theorems, but we rely on those from many other areas: optics, geometry, physics, machine learning, optimization, statistics, etc.
- Why is computer vision so cool?
 - You are in good company: Euclid, Alhazen, da Vinci, Kepler, Galileo, Descartes, Newton, Huygens, Maxwell, Helmholtz, Mach, Herring, Cajal, Minkowski, Hubel & Wiesel, Wald
 - Broad applicability: robotics, biometrics, search, etc.
 - Open area, lots of room for new work

Course goals

- By the end of the semester, you should be able to:
 - Look at a problem and identify if CV is an appropriate solution
 - If so, identify what types of algorithms might be applicable
 - Apply those algorithms
 - Conquer the world
- In order to get there, you will need to:
 - Do a lot of math (calculus, linear algebra, probability)
 - Do a fair amount of programming
 - Work hard (this is a 3-unit course)

Topics covered

- Sensing light and image representation
 - Image formation, cameras, color, light, shading
- Basic image processing
 - Inear filtering; detecting lines, corners, and blobs
- Recognition + other topics
 - model fitting, designing image representations, machine learning
 - applications: detection, segmentation, tracking, etc.

- Not a zoo tour!
- Not an introduction to tools!
- You will learn how these techniques work and how to implement them

Requirements and grading

- Weekly homework assignments: 20%
 - About 12 in total, graded at 0, 0.5 or 1
 - Completed individually
 - May not be late at all
- Mini-projects: 50%
 - Four or five in total
 - Completed individually (but can be discussed with others)
 - Can be 24 hours late, with a 50% mark down
- Project: 25%
 - Canned or your choice, teams of two or more
 - Proposal, presentation (or poster), written report
- Class and forum participation: 5%

Who should take this course?

- Is this the right course for you?
 - Do you have all the pre-requisites?
 - good math and programming background
 - Balance of theory vs. practice. Other courses being offered:
 - ➡ 589/689 Machine learning
 - 697L Deep learning seminar (Focus is on CNNs)
 - 690IV Intelligent visual computing (Focus is on computer graphics)
- Still not sure?
 - talk to me after class
- Wait listed?
 - Will decide on a case by case basis

Course logistics

- My office hours: Tuesday 2:30 3:30pm, CS 274
- TA: Tsung-Yu Lin (office hours: tbd)
- Course website: <u>http://www-edlab.cs.umass.edu/~smaji/cmpsci670</u>
 - Class slides, links to homework assignments will the posted here
 - Check regularly for announcements
- Moodle for homework submissions and grades
- Piazza for discussions
 - If you use it, I will
- Textbooks (recommended):
 - Forsyth and Ponce, Computer Vision: A Modern Approach, 2nd edition
 - Richard Szeliski, Computer Vision: Algorithms and Applications (available online as pdf). I'll post readings from this

Things you need to know now!

Finish homework 00

- Due 8 September (that's Thursday! before class)
- Not graded but required
- Submit in .pdf format only via moodle
 - Those who are not yet on moodle may email me
- Get started on MATLAB
 - Acquire Matlab (student license for 100\$)
 - Intro to MATLAB programming
- Read the web page!

Now, on to some real content ...

(but first, questions?)

Why vision? Light!

It is how we see other people, navigate our environment, communicate ideas, entertain, and **measure** the world around us.

CMPSCI 670

Subhransu Maji (UMass, Fall 16)

Why is light good for measurement?

Microscopy Sur

Surveillance

3D Analysis / Navigation

Remote Sensing

- Plentiful, sometimes free
- Interacts with many things, but not too many
- Goes generally straight over distance
- Very small → high spatial resolution
- Fast, but not too fast \rightarrow time of flight sensors
- Easy to detect \rightarrow cameras work, are cheap
- Comes in many flavors (wavelengths)

Source: Alex Berg

The goal of computer vision

Extract properties of the world from visual data (i.e., measurements of light)

We are remarkably good at this!

The images ...

#1

#2

#3

#4

#5

Human vision

- Amazingly good, fast and accurate
- Huge amount of bandwidth to the brain is visual data
- Large amount of the brain seems to be for processing visual data
- Vision is difficult!

But we make mistakes ...

Checker shadow illusion - Edward H. Adelson

Other optical illusions

http://www.illusions.org

Are the horizontal lines parallel?

Are the purple lines straight?

Is this a spiral?

is the left circle (in the center) bigger?

Are these failures of our vision system?

Subhransu Maji (UMass, Fall 16)

Vision as inverse of graphics

- Many possibilities how do we solve this ambiguity?
 - Images are confusing, but they also reveal the structure of the world through numerous cues
 - Our job is to interpret the cues!

Slide credit: J. Koenderink

Cues: Linear perspective

Parallel lines merge at the horizon

http://kalisdigitalphotos.blogspot.com

Analyzing parallel lines to estimate space

Cues: Aerial (Atmospheric) perspective

Photo by **Éole Wind**

As the distance of the object from the viewer *increases*, the contrast between the object and its background *decreases*.

Cues: Occlusion ordering

Chicago loop, image source: wikipedia

CMPSCI 670

Cues: texture gradient

Gustave Caillebotte. Paris Street, Rainy Day, 1877, Art Institute of Chicago

Subhransu Maji (UMass, Fall 16)

Cues: shading and lighting

"The four seasons" sculpture set

Many other cues ...

- Motion parallax: how things move relative to each other as we move.
 Objects near us move more than objects far away. Also provides grouping cues.
- Familiar size: Size of known things, e.g. faces gives us an estimate of the depth.
- **Defocus blur**: Far away objects are blurrier than nearer. Commonly used in photographs to create a perception of depth.
- Elevation: Distance from the horizon. Objects closer to the horizon are perceived to be farther.

Some examples of successful computer vision applications ...

Optical character recognition (OCR)

Digit recognition yann.lecun.com

Automatic cheque readers (Most bank ATMs)

License plate readers (google street view)

Sudoku grabber http://sudokugrab.blogspot.com/

Subhransu Maji (UMass, Fall 16)

Biometrics

Fingerprint scanners are now on many new laptops and other devices Face recognition systems are beginning to appear more widely http://www.sensiblevision.com

Face detection

Face detection is on many cameras these days

Face recognition

http://www.apple.com/ilife/iphoto

Instance recognition

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

Automotive safety

- Mobileye : Vision systems on high end BMW, GM, Volvo models
 - Pedestrian collision warning
 - Forward collision warning
 - Lane departure warning
 - Headway monitoring and warning

Source: A. Shashua, S. Seitz

Self-driving cars

Source: L. Lazebnik

Interactive interfaces

Microsoft Kinect depth sensors

Large-scale 3D reconstruction

Photo Tourism: Exploring Photo Collections in 3D

YouTube link

CMPSCI 670

Subhransu Maji (UMass, Fall 16)

Source: S. Seitz, N. Snavely 39

Vision for robotics, space exploration

NASA's Curiosity Rover has 17 cameras as a part of its sensing system http://en.wikipedia.org/wiki/Curiosity_(rover)

CMPSCI 670

Subhransu Maji (UMass, Fall 16)

Course details

- Course overview
 - I. Early vision: image formation, sensing, light and shading
 - II. Basic image processing: digitizing images, linear filtering and applications such as line, corner and blob detection
 - III. Recognition: model fitting, image representations, simple classifiers, convolutional neural networks, applications
 - IV. Additional topics (time permitting)
- We are not going to cover:
 - Graphics: physics of light transport, material properties, rendering
 - Computational photography: design of sensing devices, etc
 - How the human vision system works

I. Early vision

image formation

color perception

II. Basic image processing

image representation

image filtering

corner and blob detection

Source: L. Lazebnik

CMPSCI 670

Subhransu Maji (UMass, Fall 16)

III. Recognition

III. Recognition

designing image representations

machine learning

Subhransu Maji (UMass, Fall 16)

V. Additional topics

Optical flow

Tracking

Or something else?

Subhransu Maji (UMass, Fall 16)

For next class ...

- Finish and submit homework 00
- Readings:
 - The speed of processing in the human visual system, Thorpe et al., Letters to Nature, 1996
 - Chapter 1 in Richard Szeliski (RS) textbook