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• Homework 4 - grades posted 
• Homework 5 - due on Wednesday 
• Project 

• Presentations on Dec. 1 and 3 
• Each person (or team) will get 7 (or 10) mins to present 

- Preliminary results, data analysis, etc 

• Final report due on Dec. 13 (hard deadline) 

• Next lecture is a guest lecture by: 
• “Crafting the Perfect Selfie using Computer Vision”                

Aditya Khosla, MIT

Administrivia

2



• Shallow vs. deep architectures 
• Background 

• Traditional neural networks 
• Inspiration from neuroscience 

• Stages of CNN architecture 
• Visualizing CNNs 
• State-of-the-art results 
• Packages

Overview

3Many slides are by Rob Fergus and S. Lazebnik



Traditional Recognition Approach
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• Features are key to recent progress in recognition 
• Multitude of hand-designed features currently in use 

• SIFT, HOG, …………. 
• Where next? Better classifiers? Or keep building more features?

Traditional Recognition Approach
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Felzenszwalb,  Girshick,  
McAllester and Ramanan, PAMI 2007

Yan & Huang  
(Winner of PASCAL 2010 classification competition)



• Learn a feature hierarchy all the way from pixels to classifier 
• Each layer extracts features from the output of previous layer 
• Train all layers jointly

What about learning the features?
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“Shallow” vs. “deep” architectures
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Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…



• Artificial neural network is a group of interconnected nodes 
• Circles here represent artificial “neurons” 
• Note the directed arrows (denoting the flow of information)

Artificial neural networks
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image credit wikipedia



Inspiration: Neuron cells

9http://en.wikipedia.org/wiki/Neuron

http://en.wikipedia.org/wiki/Neuron


• D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981) 
• Visual cortex consists of a hierarchy of simple, complex, and 

hyper-complex cells 

Hubel/Wiesel Architecture 

10Source

http://cns-alumni.bu.edu/~slehar/webstuff/pcave/hubel.html


The basic unit of computation
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• Without non-linearity, the whole system is linear 
• Unfortunately, neural network research stagnated for decades 

after the publication by Minsky and Papert, 1969, who showed 
that a perceptron cannot represent the “xor” function

Non-linearity is important
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• Back-propagate the gradients to match the outputs 
• Were too impractical till computers became faster

Training ANNs
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we know the 
desired output

df(g(x))/dx = (df/dg)(dg/dx)
“Chain rule” of gradient

http://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf

http://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf


• In the 1990s, simpler and faster learning methods such as 
SVMs and boosting were favored over ANNs. 

• Why? 
• Need many layers to learn good features — many parameters 

need to be learned 
• Needs vast amounts of training data (related to the earlier point) 
• Convergence is slow, get stuck in local minima 
• Vanishing gradients for deep models

Issues with ANNs
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The neocognitron, by Fukushima (1980)!
(But he didn’t propose a way to learn these models)

ANNs for vision
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• Neural network with specialized 
connectivity structure 

• Stack multiple stages of feature 
extractors 

• Higher stages compute more 
global, more invariant features 

• Classification layer at the end

Convolutional Neural Networks
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Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document 
recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


• Feed-forward feature extraction:  
1. Convolve input with learned filters 
2. Non-linearity  
3. Spatial pooling  
4. Normalization 

• Supervised training of convolutional  
filters by back-propagating  
classification error

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks
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Feature maps



• Dependencies are local  
• Translation invariance 
• Few parameters (filter weights) 
• Stride can be greater than 1  

(faster, less memory) 

1. Convolution

18Input Feature Map

.

.
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• Per-element (independent) 
• Options: 

• Tanh 
• Sigmoid: 1/(1+exp(-x)) 
• Rectified linear unit  (ReLU) 

- Simplifies backpropagation 
- Makes learning faster 
- Avoids saturation issues  

à Preferred option

2. Non-Linearity
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• Sum or max!
• Non-overlapping / overlapping regions!
• Role of pooling:!

• Invariance to small transformations 
• Larger receptive fields (see more of input)

3. Spatial Pooling
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Max

Sum



• Within or across feature maps 
• Before or after spatial pooling

4. Normalization
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Feature Maps 
Feature Maps  

After Contrast Normalization



Compare: SIFT Descriptor
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Lowe  
[IJCV 2004]



• Handwritten text/digits 
• MNIST (0.17% error [Ciresan et al. 2011]) 
• Arabic & Chinese   [Ciresan et al. 2012] 

!

• Simpler recognition benchmarks 
• CIFAR-10 (9.3% error [Wan et al. 2013]) 
• Traffic sign recognition 

- 0.56% error vs 1.16% for humans  
[Ciresan et al. 2011] 
!

• But until recently, less good at more  
complex datasets 
• Caltech-101/256 (few training examples) 

CNN successes
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ImageNet Challenge 2012
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[Deng et al. CVPR 2009] 

• 14+ million labeled images, 20k classes 
• Images gathered from Internet 
• Human labels via Amazon Turk  
• The challenge: 1.2 million training 

images, 1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


ImageNet Challenge 2012
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• Similar framework to LeCun’98 but: 
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params) 
• More data (106 vs. 103 images) 
• GPU implementation (50x speedup over CPU) 

• Trained on two GPUs for a week 
• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


Krizhevsky et al. -- 16.4% error (top-5) 
Next best (SIFT + Fisher vectors) – 26.2% error

ImageNet Challenge 2012
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Visualizing CNNs
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M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,  
arXiv preprint, 2013

http://arxiv.org/pdf/1311.2901v3.pdf


Layer 1 Filters
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Similar to the filter banks used for texture recognition



Layer 1: Top-9 Patches
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Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map 



Layer 2: Top-9 Patches



Layer 3: Top-9 PatchesLayer 3: Top-9 Patches



Layer 3: Top-9 Patches



Layer 4: Top-9 Patches



Layer 4: Top-9 Patches



Layer 5: Top-9 Patches



Layer 5: Top-9 Patches



Evolution of Features During Training
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Evolution of Features During Training
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• Mask parts of input with occluding square 
!

• Monitor output (class probability)

Occlusion Experiment
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41

Total activation in most  
active 5th layer feature map

Other activations from  
same feature map
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p(True class) Most probable class
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Total activation in most  
active 5th layer feature map

Other activations from  
same feature map
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p(True class) Most probable class
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Total activation in most  
active 5th layer feature map

Other activations from  
same feature map



http://www.image-net.org/challenges/LSVRC/2013/results.php

ImageNet Classification 2013 Results
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ImageNet 2014 - Test error at 0.07 (Google & Oxford groups)
http://image-net.org/challenges/LSVRC/2014/results

http://www.image-net.org/challenges/LSVRC/2013/results.php
http://www.image-net.org/challenges/LSVRC/2013/results.php
http://www.image-net.org/challenges/LSVRC/2013/results.php
http://image-net.org/challenges/LSVRC/2014/results


• Take model trained on ImageNet 
• Take outputs of 6th or 7th layer before or after nonlinearity as 

features 
• Train linear SVMs on these features (like retraining the last 

layer of the network) 
• Optionally back-propagate: fine-tune features and/or 

classifier on new dataset

CNNs for small datasets
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Tapping off features at each Layer
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Plug features from each layer into linear SVM

Higher layers are better



Results on benchmarks
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[1] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition, arXiv preprint, 2014

[1] SUN 397 dataset (DeCAF)[1] Caltech-101 (30 samples per class)

[2] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, CNN Features off-the-shelf: an Astounding Baseline for 
Recognition, arXiv preprint, 2014

[2] MIT-67 Indoor Scenes dataset 
(OverFeat)[1] Caltech-UCSD Birds (DeCAF)

http://arxiv.org/pdf/1310.1531v1.pdf
http://arxiv.org/pdf/1310.1531v1.pdf
http://arxiv.org/pdf/1310.1531v1.pdf
http://arxiv.org/pdf/1403.6382v2.pdf
http://arxiv.org/pdf/1403.6382v2.pdf
http://arxiv.org/pdf/1403.6382v2.pdf


R-CNN achieves mAP of 53.7% on PASCAL VOC 2010 
For comparison, Uijlings et al. (2013) report 35.1% mAP using the same region 
proposals, but with a spatial pyramid and bag-of-visual-words approach.  
Part-based model with HOG (DPM, Poselets) ~ 33.5%

CNN features for detection
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R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object 
Detection and Semantic Segmentation, CVPR 2014 

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


CNN features for face verification

51

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-Level 
Performance in Face Verification, CVPR 2014, to appear.

https://www.facebook.com/download/233199633549733/deepface.pdf


• Cuda-convnet (Alex Krizhevsky, Google) 
• High speed convolutions on the GPU 

• Caffe (Y. Jia, Berkeley) 
• Replacement of deprecated Decaf 
• High performance CNNs 
• Flexible CPU/GPU computations 

• Overfeat (NYU) 
• MatConvNet (Andrea Vedaldi, Oxford) 

• An easy to use toolbox for CNNs from MATLAB 
• Comparable performance/features with Caffe

Open-source CNN software

52

https://code.google.com/p/cuda-convnet/
http://caffe.berkeleyvision.org/
https://github.com/UCB-ICSI-Vision-Group/decaf-release/
http://cilvr.nyu.edu/doku.php?id=code:start
http://www.vlfeat.org/matconvnet/

