CMPSCI 670: Computer Vision
Obiject detection continued ...
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e No class on Wednesday

e Following Tuesday’'s schedule this Wednesday

e Office hours this week are at Thursday 3:45 - 4:45 pm



lToday's lecture

e Object detection

e Speeding up it up

e Making it more accurate
e | ecture overview

e Recap last lecture (HOG, template matching, training)

e |ssues with the sliding window detector
e Selective search using region proposals

e Fast kernel SVM classifiers



Detection = repeated classification

face or not?




Histograms of oriented gradients (HOG)

e [ntroduce Invariance

e Bias / gain/ nonlinear transformations
bias: gradients / gain: local normalization
nonlinearity: clamping magnitude, orientations
e Small deformations
spatial subsampling

local "bag” models

e References

* "Histograms of oriented gradients for human detection.” N. Dalal and
B. Triggs, CVPR 2005.

e “Finding people in images and videos.” N. Dalal, Ph.D. Thesis,
Institut National Polytechnique de Grenoble, 2006.



Histograms of oriented gradients (HOG)

* Partition image into blocks at multiple scales and compute
histogram of gradient orientations in each block

20x20 cells

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Image credit: N. Snavely 6



http://lear.inrialpes.fr/pubs/2005/DT05

Template matching with HOG

HOG feature map Template Detector response map

Compute the HOG teature map for the image
Convolve the template with the feature map to get score
Find peaks of the response map (non-max suppression)

What about multi-scale?



Multi-scale template matching

> SCOI’e(I, P) — W ¢(l7 P)

Image pyramid HOG feature pyramid

e Compute HOG of the whole image at multiple resolutions

® Score each sub-windows of the feature pyramid



Example pedestrian detections

[Dalal06]



Mining hard negatives
3 ¥k é‘v

“Hard” negatives

SVM

+ Neghard = {... windows with score >= -| ...}
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Person detection using poselets

e Detect each poselet in an image

e \/ote for the person bounding
boX

e ind non-overlapping clusters

e Score each cluster using a
weighted combination of poselet
detection scores

S; = E Wy Gy

o pEC’i
person / \

detection score  weight of poselet
each poselet detection score

Bourdev & Malik 09, Bourdev et al.|0, Maji & Malik 10 12



Issues with the “sliding window™ approach

e Computationally expensive — there are too many windows

e multiply by scales

e multiply by aspect ratio

e Need very tast classifiers
o Typically limited to linear SVMs and boosting

e But these are not the most accurate (kernel SVMs, etc)
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Intelligent sliding windows

e |nstead of exhaustively searching over all possible

windows, lets “intelligently” choose locations where the
classifier Is evaluated

e Some considerations:

¢ \We want a small number of such regions (~1000)

e \We want high recall — no objects should be missed
e Category independent
that way we can share the cost of computing features

e Fast — shouldn’t be slower than running the detector itself
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How do we get such proposals?

Segmentations
e \Why might this be a good idea”

e Can use low-level cues such as color and texture similarity which
are category independent

e (Often fast to compute

¢ |nherently span scale and aspect-ratio

D -
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Input .b I 1
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Region tree Bag of regions

Recognition using regions, Gu et al. 15




We will look at this approach

Segmentation as Selective Search for Object Recognition,
K. Van de Sande, J. Uijlings, T. Gevers, and A. Smeulders,
ICCV 2013

Winner of the PASCAL VOC challenge in recent years
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|_ets start with segmentations

“Efficient graph-based image segmentation”
Felzenszwalb and Huttenlocher, IJCV 2004

e \We typically get over-segmentation for big objects, i.e.,
objects are broken into multiple regions

e How can we fix this?
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How to obtain high recall”

* |mages are intrinsically hierarchical
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e Segmentation at a single scale is not enough

e | ets merge regions to produce a hierarchy
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Hierarchical clustering

e Compute similarity measure between all adjacent region
pairs a and b as:

-

\

S(a,.b) = Sgizela,b) + Sterture(@.b)

7 1

Proportion of the image Histogram intersection of

area that a and b jointly 8-bin gradient direction
occupy histogram computed in

each color channel

G . ((l b) - Encourages small regions to merge early and prevents single
Stee\™ region from gobbling up all others one by one.

Stesture (@, D) # Encourages regions with similar texture (and color) to be
grouped early.
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Hierarchical clustering

1.Merge two most similar regions based on S

2.Update similarities between the new region and its neighbors

3.Go back to step 1 until the whole image is a single regions
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Example proposals
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Example proposals
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Adding diversity to the proposals
o

Color cues work best Texture cues work best

e No single segmentation works for all images

e Use different color spaces

e RGB, Opponent color (e.g., LAB), normalized rgb, hue

e Vary parameters in the Felzenszwalb segmentation method
e k=100, 150, 200, 250] (k= threshold parameter)
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Ground truth B ot

Evaluating object proposals

Predicted Bp

_ |Bet N By
| Bgt U By

overlap(Bgt, Bp)

We want:
1. Every ground truth box be covered by at least one proposal
2. We want as few proposals as possible

24



Evaluating object proposals

e Recall is the proportion of objects that are covered by some
box with overlap > 0.5

100 VOC2007 test
E 1,536 windows/image
o 96.7% recall
k=100,150,200,250
80 | =€ Kk=100,200 (== Selected
" settings

.| L |
RGE RGB+Opp RGB+Opp+rgb  RGB+Opp+rgb+H

Colour Spaces

Compare this to ~100,000 regions for sliding windows
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Another approach:

_—j .

‘Objectness’

RBY L AN p "S- Ty 2N :
: prat s Wt -~
’f .

e \What is an object”? Alexe et al., CVPR 2010

e | earns to detect objects from background using

e color, texture, edge cues

® generic object detector

e One of the early methods for object proposals
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Another approach: "Edge boxes”
A A

e Edge Boxes: Locating Object Proposals from Edges, Zitnick
and Dollar, ECCV 2014

e Number of contours that are wholly contained inside the box is
an indicative of the likelihood that the box contains an object.

e \ery fast (0.25s per image)
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Detection using region proposals

e Once again, detection = repeated classification

e But we only classity object proposals

* Training a classitier

Model
SVM
Object hypothes (Histogram Intersection
—ed — P Kemel)
_— | L‘_‘ -
‘. 4—=£ :_-'v' l
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Detalls of the features

e HOG was used in the Dalal & Triggs model for efficiency

e But we can use complex teatures and better classifiers

e |n particular SIFT bag of words features

image dense keypoints  SIFT descriptors  vocabulary
"#["e"e"e )

visual words histogram
00 000 000000
e

Image by Andrea Vedaldi 29



Detalls of the classifier

e SVM classifier with a histogram intersection kernel
e Recap of SVMs
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L Inear classifiers

31



L Inear classifiers

e Find linear function (hyperplane) to separate positive and
negative examples

@
® X; positive: X, wW+b=0
@ .
° X, negative: X, wW+b<0
@
@
@
e o e o
@ \
@
® O
@

Which hyperplane
® is best?

32



Support vector machines

e -ind hyperplane that maximizes the margin between the
positive and negative examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 33


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

e -ind hyperplane that maximizes the margin between the
positive and negative examples

\ ® X, positive (), =1): X, W+b=1
x, negative(y, =-1): x,-w+b=-1
® For support vectors, X. "W+ b==1
O
® e Distance between point | X, W +D|
and hyperplane: |w|

Therefore, the marginis 2/ ||w||

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 34



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

FInding the maximum margin hyperplane

1. Maximize margin 2/ ||w||

2. Correctly classify all training data:

X, positive (y; =1): X, W+b=1

X, negative(y, =-1): x,-w+b=-1

Quadratic optimization problem:

HvalglEHWH subjectto y,(wW-x, +b) =1

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 35


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

FInding the maximum margin hyperplane

® SO'U“OH W = Eiqiyixi

Learned weight
(nonzero only for support vectors)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 36


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

FInding the maximum margin hyperplane

® SO'U“O” W = Eiaiyixi

w-X. +b =y, for any support vector

e (Classification function (decision boundary):
W X+b= Eiocl.yixi ‘X +b
e Notice that it relies on an inner product between the test
point X and the support vectors X;

e Solving the optimization problem also involves computing
the inner products x; - X; between all pairs of training points

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining

and Knowledge Discovery, 1998 37


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

What if the data is not linearly separable”

* Separable: m1bn§HWH subjectto  y, (WX, +b) =1
Non-separable: HVEIZ?EHWH + CEE

subjectto y.(w-x. +b)-1+& =0

C: tradeoff constant, & : slack variable (positive)
Whenever marginis 21, §=0§& =1-y.(wW-X, +b)
Whenever margin is < 1,

38



What if the data is not linearly separable”

nv?bnEHWH +C EmaX(Ol y.(W-X, +b))

\ } \ }
| f

Maximize Minimize classification
margin mistakes

39



What if the data is not linearly separable”

nv?bnEHWH +C EmaX(Ol y.(W-X, +b))

Margin

Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo 40



http://cs.stanford.edu/people/karpathy/svmjs/demo

Nonlinear SVMs

« Datasets that are linearly separable work out great:

« But what if the dataset is just too hard?

*—o *—0—F——000—0 0 o—

 Wecanmap itto a highoer-dimensionaf space:

Slide credit;: Andrew Moore 41



Nonlinear SVMs

e (General idea: the original input space can always be
mapped to some higher-dimensional feature space where
the training set is separable:

Slide credit;: Andrew Moore 40



Nonlinear SVMs

 The kernel trick: instead of explicitly computing the lifting
transformation ¢(x), define a kernel function K such that

K(x,y) = o(x) - o(y)

(the kernel function must satisty Mercer’s condition)

® This gives a nonlinear decision boundary in the original
feature space:

Yy e(x) @) +b=Y o,y,K(x;,X) +b

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 43



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Accuracy vs. Evaluation Time

v Non-linear Kernel
£
)
C
o
=
g8
=
>
;

h(x)=w-z+b

Accuracy
Linear SVM: O (feature dimension)

Non Linear SVM: O ( # support vectors X feature dimension)

44



What Is the Intersection Kernel?

"Histogram Intersection” kernel between histograms a, b:

min(a,b)

Introduced by Swain and Ballard 1991 to compare color histograms.

45



SVM classification function

FHsv H#sv #Hdim
h(x) = Z i Kmin(2,85) +b = Z (v ( Z min(x;, sij)) + b
j=1 \ j=1 i=1

\

sum over support vectors

#sv times slower than linear SVM

46



SVM classitication function
H#sv Hsv Hdim
h(x) = Z i Kmin(2,85) + b = Z (v ( Z min(x;, sij)) + b

J=1 j=1 i=1

Key Insight : Additive Property

H#sv #Hdim
h(x) = Zozj ( Z min(z;, s,;j)) + b

#dim [ #sv
- E E o min(x;, s;;) | +0
i=1 \j=1
#dim # SV
_ E hi(x;) + b hi(z;) = E a; min(x;, Sij)
i—1 J=1

Maji, Berg and Malik, CVPR 08



SVM classification function

H#sv Hsv Hdim
h(x) = Z i Kmin(2,85) + b = Z v ( Z min(xz;, s,;j)) + b
=1 j=1 1=1
Algorithm 1
# 51
Z(YJ min(x;, si;) O(#sv)

Maji, Berg and Malik, CVPR 08



SVM classification function
H#sv Hsv Hdim
h(x) = Z i Kmin(2,85) + b = Z v ( Z min(x;, s,;j)) + b

J=1 j=1 i=1

Algorithm 1
# St
Z(YJ min(x;, si;) O(#sv)
Z

(lJ Sz] E g | €Ly

Maji, Berg and Malik, CVPR 08



SVM classification function
FHsv H#sv #Hdim
h(x) = Z i Kmin(2,85) + b = Z (v ( Z min(x;, sij)) + b

j=1 j=1 i=1

Algorithm 1
#s1
Z()‘J min(z;, s;;) O(#sv)
-2

(1J Sz] E ()c‘j Ly

sort the support vector
values in each coordinate,
and pre-compute these

sums for each rank. Maji, Berg and Malik, CVPR 08




SVM classitication function
H#sv Hsv Hdim
h(x) = Z i Kmin(2,85) + b = Z (v ( Z min(x;, sij)) + b

j=1 j=1 i=1

Algorithm 1
# 81 _
Za] min(z;, s;;) w«g
Z

- \

(1J Sij + Z ;| Xy O(log(#sv))

sort the support vector To evaluate, find position of
values in each coordinate, in the sorted support vector
and pre-compute these values Sij (cost : log #sv)
sums for each rank. look up values, multiply & add




SVM classification function

H#sv #sv Hdim
h(x) = Z i Kmin(z,85) + b = Z v ( Z min(x;, slj)) + b

j=1 j=1 i=1

Algorithm 2
st _
Za] min(z;, s;;) %\

hi(x;)

—

E ;S5 1 E Qg | Ty SO _

J18i5<T4 jzsij >T;
O(1)

For IK h; is piecewise linear, and quite
smooth, blue plot. We can approximate
with fewer uniformly spaced segments, red
plot. Saves time & space!



SVM classification function

H#sv Hsv Hdim
h(x) = Z i Kmin(2,85) + b = Z v ( Z min(z;, sz-j)) + b

Algorithm 2

Hdim # sv
K(a,b) = Z Ki(a;,b;) hi(x;) = Z o Ki(24, 8i5)
i=1 J=1
Intersection K(a, b) — Il‘liIl((L, b)
O(1)
Chi-squared ]{((L, b) — (J,Qibb

b b
Jensen-Shannon K((L, b) = log (& T ) + blog (a i )

g4



Linear vs. Intersection Kernel SVM

Dataset Measure Linear SVM IK SVM Speedup

INRIA pedestrians RecaII@ZFPPI 78.9 86.6 2594 X
© DCpedestians  Accuracy 722 890  2253X
Caltech101, 15 examples  Accuracy 388 504 37 X
Caltech101, 30 examples ~ Accuracy 443 566 62 X
""""""""""""""""""""" MNIST digts ~~ Emor 144 077  2500X
UIUC cars (Single Scale) Precision@ EER 898 985 65X

On average 5x slower than linear SVM but 100-1000x
faster than standard kernel SVM classifier

Maji, Berg and Malik, CVPR 08



Results on PASCAL VOC detection

System plane bike bird boat bottle bus car cat chair
NLPR 533 553 192 210 300 544 467 412 .200
MIT UCLA [29] .542 485 .157 .192 292 885 435 417 .169
NUS 491 524 178 .120 306 .535 .328 373 .177
UoCTTI [Y] 524 543 130 .156 351 542 491 318 .155
This paper S82 419 192 140 .143 448 367 .488 .129

chair cow table dog horse motor person plant sheep sofa train tv

200 315 207 303 486  .553 465 102 344 265 503 .403
J69 285 267 .309 483 550 417 097 358 308 472 408
A77 0 .306 277 295 519 .563 442 09  .148 279 495 384
JAS85 .262 135 215 454 516 475 091 351 .194 466 .380
129 281 287 394 441 525 258 141 388 342 431 426

PASCAL VOC 2010 detection results
This paper = selective search
Does better on deformable objects such as animals
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Current state of the art in detection
e R-CNNs (Girshick et al.)

e Regions with CNN features

R-CNN: Regions with CNN features

ﬂl aeroplane? no.
-> person? yes.
s 1. V' CNNN
N L 0 I " | pat 4"cvmonitor‘? no.
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

e \We will look at CNNs in the next lecture

56



