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• No class on Wednesday 
• Following Tuesday’s schedule this Wednesday 

• Office hours this week are at Thursday 3:45 - 4:45 pm

Administrivia
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• Object detection 
• Speeding up it up 
• Making it more accurate 

• Lecture overview 
• Recap last lecture (HOG, template matching, training) 
• Issues with the sliding window detector 
• Selective search using region proposals 
• Fast kernel SVM classifiers

Today’s lecture
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Detection = repeated classification

4

Detection

face or not?



• Introduce invariance 
• Bias / gain / nonlinear transformations 

- bias: gradients / gain: local normalization 
- nonlinearity: clamping magnitude, orientations 

• Small deformations 
- spatial subsampling 
- local “bag” models 

!

• References 
• “Histograms of oriented gradients for human detection.” N. Dalal and 

B. Triggs, CVPR 2005. 
• “Finding people in images and videos.” N. Dalal, Ph.D. Thesis, 

Institut National Polytechnique de Grenoble, 2006.
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Histograms of oriented gradients (HOG)



• Partition image into blocks at multiple scales and compute 
histogram of gradient orientations in each block

Histograms of oriented gradients (HOG)
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N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

10x10	  cells

20x20	  cells

Image credit: N. Snavely

http://lear.inrialpes.fr/pubs/2005/DT05


• Compute the HOG feature map for the image 
• Convolve the template with the feature map to get score 
• Find peaks of the response map (non-max suppression) 
• What about multi-scale?

Template matching with HOG
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TemplateHOG feature map Detector response map



• Compute HOG of the whole image at multiple resolutions 

• Score each sub-windows of the feature pyramid

(a) (b) (c) (d) (e) (f) (g)
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

would help to improve the detection results in more general
situations.
Acknowledgments. This work was supported by the Euro-
pean Union research projects ACEMEDIA and PASCAL. We
thanks Cordelia Schmid for many useful comments. SVM-
Light [10] provided reliable training of large-scale SVM’s.
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Example pedestrian detections
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Introduction

Detect & localize upright people
in static images

Challenges
Wide variety of articulated poses
Variable appearance/clothing
Complex backgrounds
Unconstrained illumination
Occlusions, different scales

Applications
Pedestrian detection for smart cars
Film & media analysis
Visual surveillance

Histograms of Oriented Gradients for Human Detection – p. 2/13
[Dalal06]



Mining hard negatives
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Descriptor Cues

input image weighted
pos wts

weighted
neg wts

avg. grad outside in block

The most important cues
are head, shoulder, leg
silhouettes
Vertical gradients inside
the person count as
negative
Overlapping blocks those
just outside the contour
are the most important

Histograms of Oriented Gradients for Human Detection – p. 11/13

Negrand = {... random background patches ...}                         

SVM “Hard” negatives

+ Neghard = {... windows with score >= -1 ...}                         

Descriptor Cues

input image weighted
pos wts

weighted
neg wts

avg. grad outside in block

The most important cues
are head, shoulder, leg
silhouettes
Vertical gradients inside
the person count as
negative
Overlapping blocks those
just outside the contour
are the most important

Histograms of Oriented Gradients for Human Detection – p. 11/13

SVM

Figure 2. Some sample images from our new human detection database. The subjects are always upright, but with some partial occlusions
and a wide range of variations in pose, appearance, clothing, illumination and background.

probabilities to be distinguished more easily. We will often
use miss rate at 10−4FPPW as a reference point for results.
This is arbitrary but no more so than, e.g. Area Under ROC.
In a multiscale detector it corresponds to a raw error rate of
about 0.8 false positives per 640×480 image tested. (The full
detector has an even lower false positive rate owing to non-
maximum suppression). Our DET curves are usually quite
shallow so even very small improvements in miss rate are
equivalent to large gains in FPPW at constant miss rate. For
example, for our default detector at 1e-4 FPPW, every 1%
absolute (9% relative) reduction in miss rate is equivalent to
reducing the FPPW at constant miss rate by a factor of 1.57.

5 Overview of Results
Before presenting our detailed implementation and per-

formance analysis, we compare the overall performance of
our final HOG detectors with that of some other existing
methods. Detectors based on rectangular (R-HOG) or cir-
cular log-polar (C-HOG) blocks and linear or kernel SVM
are compared with our implementations of the Haar wavelet,
PCA-SIFT, and shape context approaches. Briefly, these ap-
proaches are as follows:
Generalized Haar Wavelets. This is an extended set of ori-
ented Haar-like wavelets similar to (but better than) that used
in [17]. The features are rectified responses from 9×9 and
12×12 oriented 1st and 2nd derivative box filters at 45◦ inter-
vals and the corresponding 2nd derivative xy filter.
PCA-SIFT. These descriptors are based on projecting gradi-
ent images onto a basis learned from training images using
PCA [11]. Ke & Sukthankar found that they outperformed
SIFT for key point based matching, but this is controversial
[14]. Our implementation uses 16×16 blocks with the same
derivative scale, overlap, etc., settings as our HOG descrip-
tors. The PCA basis is calculated using positive training im-
ages.
Shape Contexts. The original Shape Contexts [1] used bi-
nary edge-presence voting into log-polar spaced bins, irre-
spective of edge orientation. We simulate this using our C-
HOG descriptor (see below) with just 1 orientation bin. 16
angular and 3 radial intervals with inner radius 2 pixels and
outer radius 8 pixels gave the best results. Both gradient-

strength and edge-presence based voting were tested, with
the edge threshold chosen automatically to maximize detec-
tion performance (the values selected were somewhat vari-
able, in the region of 20–50 graylevels).
Results. Fig. 3 shows the performance of the various detec-
tors on the MIT and INRIA data sets. The HOG-based de-
tectors greatly outperform the wavelet, PCA-SIFT and Shape
Context ones, giving near-perfect separation on the MIT test
set and at least an order of magnitude reduction in FPPW
on the INRIA one. Our Haar-like wavelets outperform MIT
wavelets because we also use 2nd order derivatives and con-
trast normalize the output vector. Fig. 3(a) also shows MIT’s
best parts based and monolithic detectors (the points are in-
terpolated from [17]), however beware that an exact compar-
ison is not possible as we do not know how the database in
[17] was divided into training and test parts and the nega-
tive images used are not available. The performances of the
final rectangular (R-HOG) and circular (C-HOG) detectors
are very similar, with C-HOG having the slight edge. Aug-
menting R-HOG with primitive bar detectors (oriented 2nd

derivatives – ‘R2-HOG’) doubles the feature dimension but
further improves the performance (by 2% at 10−4 FPPW).
Replacing the linear SVM with a Gaussian kernel one im-
proves performance by about 3% at 10−4 FPPW, at the cost
of much higher run times1. Using binary edge voting (EC-
HOG) instead of gradient magnitude weighted voting (C-
HOG) decreases performance by 5% at 10−4 FPPW, while
omitting orientation information decreases it by much more,
even if additional spatial or radial bins are added (by 33% at
10−4 FPPW, for both edges (E-ShapeC) and gradients (G-
ShapeC)). PCA-SIFT also performs poorly. One reason is
that, in comparison to [11], many more (80 of 512) principal
vectors have to be retained to capture the same proportion of
the variance. This may be because the spatial registration is
weaker when there is no keypoint detector.

6 Implementation and Performance Study
We now give details of our HOG implementations and

systematically study the effects of the various choices on de-
1We use the hard examples generated by linear R-HOG to train the ker-

nel R-HOG detector, as kernel R-HOG generates so few false positives that
its hard example set is too sparse to improve the generalization significantly.

Pos ={...                      ...}                         



Poselets for person

11Bourdev et al. 10



• Detect each poselet in an image 
• Vote for the person bounding 

box 
• Find non-overlapping clusters  
• Score each cluster using a 

weighted combination of poselet 
detection scores

Person detection using poselets
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Bourdev & Malik 09, Bourdev et al.10, Maji & Malik 10



• Computationally expensive — there are too many windows 
• multiply by scales 
• multiply by aspect ratio 

!

!

!

!

• Need very fast classifiers 
• Typically limited to linear SVMs and boosting 
• But these are not the most accurate (kernel SVMs, etc)

Issues with the “sliding window” approach 
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• Instead of exhaustively searching over all possible 
windows, lets “intelligently” choose locations where the 
classifier is evaluated 

• Some considerations: 
• We want a small number of such regions (~1000) 
• We want high recall — no objects should be missed 
• Category independent 

- that way we can share the cost of computing features 

• Fast — shouldn’t be slower than running the detector itself

Intelligent sliding windows
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• Why might this be a good idea? 
• Can use low-level cues such as color and texture similarity which 

are category independent  
• Often fast to compute 
• Inherently span scale and aspect-ratio

How do we get such proposals?
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Segmentations

Recognition using regions, Gu et al. 



Segmentation as Selective Search for Object Recognition, 
K. Van de Sande, J. Uijlings, T. Gevers, and A. Smeulders, 
ICCV 2013

We will look at this approach
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Winner of the PASCAL VOC challenge in recent years



• We typically get over-segmentation for big objects, i.e., 
objects are broken into multiple regions 

• How can we fix this?

Lets start with segmentations
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“Efficient graph-based image segmentation”  
Felzenszwalb and Huttenlocher, IJCV 2004



• Images are intrinsically hierarchical 
!

!

!

!

!

!

• Segmentation at a single scale is not enough 
• Lets merge regions to produce a hierarchy

How to obtain high recall?
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• Compute similarity measure between all adjacent region 
pairs a and b as:

Hierarchical clustering
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1.Merge two most similar regions based on S 
2.Update similarities between the new region and its neighbors  
3.Go back to step 1 until the whole image is a single regions

Hierarchical clustering
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Example proposals
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Example proposals
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• No single segmentation works for all images 
• Use different color spaces 

• RGB, Opponent color (e.g., LAB), normalized rgb, hue  

• Vary parameters in the Felzenszwalb segmentation method 
• k = [100, 150, 200, 250] (k= threshold parameter)

Adding diversity to the proposals
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Evaluating object proposals
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( , ) = | � |
| � |

We want: 
1. Every ground truth box be covered by at least one proposal 
2. We want as few proposals as possible



• Recall is the proportion of objects that are covered by some 
box with overlap > 0.5 

Evaluating object proposals
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Compare this to ~100,000 regions for sliding windows



• What is an object? Alexe et al., CVPR 2010 
• Learns to detect objects from background using 

• color, texture, edge cues 
• generic object detector 

• One of the early methods for object proposals

Another approach: “Objectness"
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• Edge Boxes: Locating Object Proposals from Edges, Zitnick 
and Dollar, ECCV 2014 

• Number of contours that are wholly contained inside the box is 
an indicative of the likelihood that the box contains an object.  

• Very fast (0.25s per image)

Another approach: “Edge boxes”
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• Once again, detection = repeated classification 
• But we only classify object proposals 
• Training a classifier

Detection using region proposals
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• HOG was used in the Dalal & Triggs model for efficiency 
• But we can use complex features and better classifiers 

• In particular SIFT bag of words features

Details of the features

29Image by Andrea Vedaldi



• SVM classifier with a histogram intersection kernel 
• Recap of SVMs

Details of the classifier
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Linear classifiers
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• Find linear function (hyperplane) to separate positive and 
negative examples

Linear classifiers
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0:negative
0:positive

<+⋅

≥+⋅

b
b

ii

ii

wxx
wxx

Which hyperplane 
is best?



• Find hyperplane that maximizes the margin between the 
positive and negative examples

Support vector machines
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


• Find hyperplane that maximizes the margin between the 
positive and negative examples

Support vector machines
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1:1)( positive
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MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

Distance between point 
and hyperplane: ||||

||
w
wx bi +⋅

For support vectors, 1±=+⋅ bi wx

Therefore, the margin is  2 / ||w|| 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


1. Maximize margin 2 / ||w|| 

2. Correctly classify all training data:  
 
 
 

Quadratic optimization problem: 

  

Finding the maximum margin hyperplane
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 
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• Solution: 
 
  

Finding the maximum margin hyperplane

36

∑= i iii y xw α

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

Learned weight  
(nonzero only for support vectors)

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


• Solution: 
 
    w·xi +b = yi, for any support vector  

• Classification function (decision boundary):  
 

• Notice that it relies on an inner product between the test 
point x and the support vectors xi 

• Solving the optimization problem also involves computing 
the inner products xi · xj between all pairs of training points

Finding the maximum margin hyperplane
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∑= i iii y xw α

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

byb
i iii +⋅=+⋅ ∑ xxxw α

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


!

• Separable: 
!

!

• Non-separable: 
!

!

!

• C: tradeoff constant, ξi : slack variable (positive) 
• Whenever margin is ≥ 1, ξi = 0 
• Whenever margin is < 1, 

What if the data is not linearly separable?
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What if the data is not linearly separable?
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Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo

What if the data is not linearly separable?
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• Datasets that are linearly separable work out great: 
 

 

 

!
• But what if the dataset is just too hard?  

!

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

41Slide credit: Andrew Moore



Φ:  x → φ(x)

• General idea: the original input space can always be 
mapped to some higher-dimensional feature space where 
the training set is separable:

Nonlinear SVMs

42Slide credit: Andrew Moore



• The kernel trick: instead of explicitly computing the lifting 
transformation φ(x), define a kernel function K such that  
 
         K(x , y) = φ(x) · φ(y) 

!

 (the kernel function must satisfy Mercer’s condition) 
• This gives a nonlinear decision boundary in the original 

feature space:

Nonlinear SVMs
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and Knowledge Discovery, 1998 
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Accuracy vs. Evaluation Time
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Accuracy

Ev
al
ua
tio

n	  
tim

e Non-‐linear	  Kernel

Linear	  Kernel

Linear	  SVM:	  	  	  	  	  	  	  	  	  	  	  	  O	  (feature	  dimension)	  
Non	  Linear	  SVM:	  	  	  O	  (	  #	  support	  vectors	  X	  feature	  dimension)



What is the Intersection Kernel?
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“Histogram Intersection” kernel  between histograms a, b:

a

b

min(a,b)

Introduced by Swain and Ballard 1991 to compare color histograms.



SVM classification function

46

#sv	  times	  slower	  than	  linear	  SVM

sum	  over	  support	  vectors



Key	  Insight	  :	  Additive	  Property

SVM classification function

Maji, Berg and Malik, CVPR 08



Algorithm	  1

SVM classification function

Maji, Berg and Malik, CVPR 08



Algorithm	  1

SVM classification function

Maji, Berg and Malik, CVPR 08



Algorithm	  1

sort	  the	  support	  vector	  
values	  in	  each	  coordinate,	  
and	  pre-‐compute	  these	  
sums	  for	  each	  rank.	  	  

SVM classification function

Maji, Berg and Malik, CVPR 08



Algorithm	  1

SVM	  classification	  function

sort	  the	  support	  vector	  
values	  in	  each	  coordinate,	  
and	  pre-‐compute	  these	  
sums	  for	  each	  rank.	  	  

To	  evaluate,	  find	  position	  of	  
in	  the	  sorted	  support	  vector	  
values	  	  	  	  	  	  	  	  	  (cost	  :	  log	  #sv)	  
look	  up	  values,	  multiply	  &	  add

SVM classification function



Algorithm	  2

For	  IK	  hi	  is	  piecewise	  linear,	  and	  quite	  
smooth,	  blue	  plot.	  	  We	  can	  approximate	  
with	  fewer	  uniformly	  spaced	  segments,	  red	  
plot.	  Saves	  time	  &	  space!	  	  	  

SVM classification function



Algorithm	  2	  

Intersection

Chi-‐squared

Jensen-‐Shannon

SVM classification function



Dataset Measure Linear SVM IK SVM Speedup

INRIA pedestrians Recall@ 2 FPPI 78.9 86.6 2594 X

DC pedestrians Accuracy 72.2 89.0 2253 X

Caltech101, 15 examples Accuracy 38.8 50.1 37 X

Caltech101, 30 examples Accuracy 44.3 56.6 62 X

MNIST digits Error 1.44 0.77 2500 X

UIUC cars (Single Scale) Precision@ EER 89.8 98.5 65 X

Linear vs. Intersection Kernel SVM

On average 5x slower than linear SVM but 100-1000x 
faster than standard kernel SVM classifier

Maji, Berg and Malik, CVPR 08



Results on PASCAL VOC detection
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PASCAL VOC 2010 detection results 
This paper = selective search 

Does better on deformable objects such as animals



• R-CNNs (Girshick et al.) 
• Regions with CNN features 
!

!

!

!

!

!

!

• We will look at CNNs in the next lecture

Current state of the art in detection
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