CMPSCI 670: Computer Vision
Image representation

University of Massachusetts, Amherst
November 3, 2014

Instructor: Subhransu Maji

Slides credit S. Lazebnik, J. Civic and others



Administrivia

e This week’s office hours are today after class

e Canceling Wednesday’s office hours because ...

Distinguished Lecturer Series

Maneesh Agrawala
University of California, Berkeley
EE D men

Wednesday, November 5, 2014
4:00pm - 5:00pm

Computer Science Building, Room 151
Faculty Host: Evangelos Kalogerakis

"Storytelling Tools"

Storytelling is essential for communicating ideas. When they are well told, stories help us make sense of
information, appreciate cultural or societal differences, and imagine living in entirely different worlds
Audio/visual stories in the form of radio programs, books-on-tape, podcasts, television, movies and
animations, are especially powerful because they provide a rich multisensory experience. Technological
advances have made it easy to capture stories using the microphones and cameras that are readily
available in our mobile devices, But, the raw media rarely tells a compelling story.

e Homework 4 due on Wednesday



| ecture outline

e Origin and motivation of the “bag of words” model
o Algorithm pipeline

e Extracting local features

e | earning a dictionary — clustering using k-means

e Encoding methods — hard vs. soft assignment

e Spatial pooling — pyramid representations

e Similarity functions and classifiers
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Origin 1: Texture recognition

e [exture Is characterized by the repetition of basic elements
or textons

e [or stochastic textures, it is the identity of the textons, not
their spatial arrangement, that matters
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Origin 2: Bag-of-words models

e Orderless document representation: frequencies of words
from a dictionary saiton & McGill (1983)
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e Orderless document representation: frequencies of words
from a dictionary saiton & McGill (1983)
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Origin 2: Bag-of-words models

e Orderless document representation: frequencies of words
from a dictionary saiton & McGill (1983)
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Origin 2: Bag-of-words models

e Orderless document representation: frequencies of words
from a dictionary saiton & McGill (1983)

Union Address

_ 1962-10-22: Soviet Missile
choices ¢
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expand
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| ecture outline

e QOrigin and motivation of the “bag of words” model
o Algorithm pipeline

e Extracting local features

e | earning a dictionary — clustering using k-means

e Encoding methods — hard vs. soft assignment

e Spatial pooling — pyramid representations

e Similarity functions and classifiers
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| ocal feature extraction

e Regular grid or interest regions
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| ocal feature extraction

~
. S I : !
Compute

descriptor Normalize patch

IJ

Detect patches

Choices of descriptor:

e SIFT

e Filterbank histograms
* [he patch itself

Slide credit: Josef Sivic 13



| ocal feature extraction
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Extract features from many images

Slide credit: Josef Sivic



| ecture outline

e QOrigin and motivation of the “bag of words” model
o Algorithm pipeline

e Extracting local features

e | earning a dictionary — clustering using k-means

e Encoding methods — hard vs. soft assignment

e Spatial pooling — pyramid representations

e Similarity functions and classifiers
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Learning a dictionary

Slide credit: Josef Sivic 16



Learning a dictionary

Clustering

Slide credit: Josef Sivic



Learning a dictionary
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Visual vocabulary

Clustering

Slide credit: Josef Sivic



Review: K-means clustering

e \Want to minimize sum of squared Euclidean distances
between features x; and their nearest cluster centers m,

DX, M)= % > (x,-m,)’

cluster £ point i in
cluster £

Algorithm:
e Randomly initialize K cluster centers

e |terate until convergence:
e Assign each feature to the nearest center
e Recompute each cluster center as the mean of all features assigned to it

19



Example codebook
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Another codebook
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Source: B. Leibe 21



| ecture outline

e QOrigin and motivation of the “bag of words” model
o Algorithm pipeline

e Extracting local features

e | earning a dictionary — clustering using k-means

¢ Encoding methods — hard vs. soft assignment

e Spatial pooling — pyramid representations

e Similarity functions and classifiers
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Encoding methods

e Assigning words to features

Visual vocabulary ) ¢ < - ¢ ¢
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Also called hard assignment

partition of space
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Encoding methods

e Assigning words to features

Visual vocabulary e different words

similar features

hard assignment

® ® o
O O O 0 1

partition of space large quantization error

24



Encoding methods

e Assigning words to features soft assignment

Visual vocabulary

— OKZ X e_f(d(xaci))

. S
’
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‘¢
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assign high weights to
centers that are close

INn practice non-zero to
only k-nearest neighbors

partition of space

25



Encoding methods

e Assigning words to features soft assignment

OKZ X e_f(d(xaci))

Visual vocabulary

similar features

L d
-

o soft assignment

® o ® o
O0c 0O 04 04 0 0.0

hard assignment

e @ ® o
partition of space 1 0 0 O 0O 1
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Encoding considerations

e \What should be the size of the dictionary?

e oo small: don’t capture the variability of the dataset

® J00 large: have too few points per cluster

® The right size depends on the task and amount of data

e.g. instance retrieval (e.g. Nister) uses a vocabulary of 1 million, whereas
recognition (e.g., texture) uses a vocabulary of about a hundred.

e Speed of embedding

® [ree structured vocabulary (e.g. Nister)

® Hashing, product quantization
e More accurate embeddings
* (Generalizations of soft embedding: LLC coding, sparse coding

* Higher order statistics: Fisher vectors, VLAD, etc.

27



| ecture outline

e QOrigin and motivation of the “bag of words” model
o Algorithm pipeline

e Extracting local features

e | earning a dictionary — clustering using k-means

e Encoding methods — hard vs. soft assignment
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Spatial pyramids

pooling: sum embeddings of local features within a region

.
.

Lazebnik, Schmid & Ponce (CVPR 2006) 29



Spatial pyramids

pooling: sum embeddings of local features within a region
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Same motivation as SIFT — keep coarse layout information
Lazebnik, Schmid & Ponce (CVPR 2006)
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Spatial pyramids

pooling: sum embeddings of local features within a region
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Same motivation as SIFT — keep coarse layout information
Lazebnik, Schmid & Ponce (CVPR 2006)
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| ecture outline

e QOrigin and motivation of the “bag of words” model
o Algorithm pipeline

e Extracting local features

e | earning a dictionary — clustering using k-means

e Encoding methods — hard vs. soft assignment
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Bags of features representation

image similarity = feature similarity

33



Comparing features

e Euclidean distance: D(h,,h,) = E(hl(z’)—hz(i))2

e | 1 distance: D(h,,h,) = E\ (1) —h, (@) ]
. o A tar (h,()-h, (i) )
distance: D(h,,h,)) = 2 b7 B ()

e Histogram intersection (similarity):

I(h,,h,) = 3 min(h, i), b, (1)

o Hellinger kernel (similarity):

K(h;,h,) = 2\/h1(i) h, (7)

34



Classifiers

Given a feature representation for images, how do we learn
a model for distinguishing features from ditferent classes?
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Classifiers

* (Given a feature representation for images, how do we learn
a model for distinguishing features from ditferent classes?

* Examples of commonly used classifiers
 Nearest neighbor classifiers
 Linear classifiers: support vector machines

36



Nearest neighbor classifier

* Assign label of nearest training data point to each test data
point

37



k-Nearest neighbor classifier

Nt, find the k closest poi

—Or a new pPoil

_abels of the

K points “vote” to classit

nts from training data
Y

> X,
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L Inear classifiers

39



L Inear classifiers

e Find linear function (hyperplane) to separate positive and
negative examples

@
® X; positive: X, wW+b=0
@ .
° X, negative: X, wW+b<0
@
@
@
e o e o
@ \
@
® O
@

Which hyperplane
® is best?

40



Support vector machines

e -ind hyperplane that maximizes the margin between the
positive and negative examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 41


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

e -ind hyperplane that maximizes the margin between the
positive and negative examples

\ ® X, positive (), =1): X, W+b=1
x, negative(y, =-1): x,-w+b=-1
® For support vectors, X. "W+ b==1
O
® e Distance between point | X, W +D|
and hyperplane: |w|

Therefore, the marginis 2/ ||w||

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 42



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

FInding the maximum margin hyperplane

1. Maximize margin 2/ ||w||

2. Correctly classify all training data:

X, positive (y; =1): X, W+b=1

X, negative(y, =-1): x,-w+b=-1

Quadratic optimization problem:

HvalglEHWH subjectto y,(wW-x, +b) =1

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 43


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

FInding the maximum margin hyperplane

® SO'U“OH W = Eiqiyixi

Learned weight
(nonzero only for support vectors)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 44


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

FInding the maximum margin hyperplane

® SO'U“O” W = Eiaiyixi

w-X. +b =y, for any support vector

e (Classification function (decision boundary):

W:X+b= ziocl.yl.xl. ‘X +b
e Notice that it relies on an inner product between the test

point X and the support vectors X;

e Solving the optimization problem also involves computing
the inner products x; - X; between all pairs of training points

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining

and Knowledge Discovery, 1998 45


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

What if the data is not linearly separable”

* Separable: m1bn§HWH subjectto  y, (WX, +b) =1
Non-separable: HVEIZ?EHWH + CEE

subjectto y.(w-x. +b)-1+& =0

C: tradeoff constant, & : slack variable (positive)
Whenever marginis 21, §=0§& =1-y.(wW-X, +b)
Whenever margin is < 1,

46



What if the data is not linearly separable”

nv?bnEHWH +C EmaX(Ol y.(W-X, +b))

\ } \ }
| f

Maximize Minimize classification
margin mistakes

47



What if the data is not linearly separable”

nv?bnEHWH +C EmaX(Ol y.(W-X, +b))

Margin

Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo 48



http://cs.stanford.edu/people/karpathy/svmjs/demo

Nonlinear SVMs

« Datasets that are linearly separable work out great:

« But what if the dataset is just too hard?

*—o *—0—F——000—0 0 o—

 Wecanmap itto a highoer-dimensionaf space:

Slide credit;: Andrew Moore 49



Nonlinear SVMs

e (General idea: the original input space can always be
mapped to some higher-dimensional feature space where
the training set is separable:

Slide credit;: Andrew Moore 50



Nonlinear SVMs

 The kernel trick: instead of explicitly computing the lifting
transformation ¢(x), define a kernel function K such that

K(x,y) = o(x) - o(y)

(the kernel function must satisty Mercer’s condition)

® This gives a nonlinear decision boundary in the original
feature space:

Yy e(x) @) +b=Y o,y,K(x;,X) +b

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998 51



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Non-linear kernels for histograms

e Histogram intersection kernel:

I(h,.h,) = S minh, 1), h, ()

N
e Hellinger kernel: K(hl,h2)=2\/h1(i)h2(i)
=1

e (Generalized Gaussian kernel:

1

K(h,h,) = eXP(_ZD(hphz)z)

e D can be L1, Euclidean, y? distance, etc.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for
Classifcation of Texture and Object Cateqgories: A Comprehensive Study, |JCV 2007

52


http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf

summary: SVMs for image classification

1. Pick an image representation (in our case, bag of features)

Pick a kernel function for that representation

3. Feed the kernel and features into your favorite SVM solver
to obtain support vectors and weights

4. At test time: compute kernel values for your test example
and each support vector, and combine them with the
learned weights to get the value of the decision function

Yy e(x) @) +b=Y o,y,K(x;,X) +b

Lots of software available! LIBSVM, LIBLINEAR, SVMLight

53



What about multi-class SVMs?

e Many options!

e For example, we have to obtain a multi-class SVM by
combining multiple two-class SVMs

e One vs. rest
¢ Training: learn an SVM for each class vs. the rest

e Testing: apply each SVM to test example and assign to it the class of the
SVM that returns the highest decision value

e One vs. one
¢ Training: learn an SVM for each pair of classes

e Testing: each learned SVM “votes” for a class to assign to the test
example

* http://www.kernel-machines.org/software

o4


http://www.kernel-machines.org/software

| ecture outline

e QOrigin and motivation of the “bag of words” model
o Algorithm pipeline

e Extracting local features

e | earning a dictionary — clustering using k-means

e Encoding methods — hard vs. soft assignment

e Spatial pooling — pyramid representations

e Similarity functions and classifiers Putting it all
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Results: scene category dataset
o) [ "R SN RS

office kitchen lmng room bedroom
= i e sl el ] =S
B ‘1 & 1)
industnal tall building inside city street hwllw*xy

coast open country mountain forest suburb

Multi-class classification results
(100 training images per class)

Weak features Strong features
(vocabulary size: 16) (vocabulary size: 200)
Level Single-level ~ Pyramid | Single-level = Pyramid
0(1 x1) 45520 122106

1 (2 X 2) 33.6 0.3 9562206 | T19=0.6 79:0=0.5
2(4x4) 61.7x06 64.7=x0.7 | 794=x0.3 81.1 0.3
3 (8 X 8) 633 0.8 668 0.6 | 77.2 0.4  80.7 0.3

56



Results: Caltech-101 dataset

Multi-class classification results (30 training images per class)

Weak features (16) Strong features (200)

Level || Single-level  Pyramid | Single-level  Pyramid
0 15:5 2209 412 =+1.2

314 +1.2 32.8+1.3 55.9 =0.9 57.0:0.8

472 +1.1 493414 | 63.6 09 64.6 0.8

2.2 =08 54.0 +1.1 60.3 +0.9 64.6 =0.7

Lo DN =

S/



Further thougnts and readings ...

o All about embeddings (detailed experiments and code)

e K. Chatfield et al., The devil is in the details: an evaluation of
recent feature encoding methods, BMVC 2011

e http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/

e |ncludes discussion of advanced embeddings such as Fisher
vector representations and locally linear coding (LLC)

e All about SVMs — http://research.microsoft.com/pubs/67119/svmtutorial.pdf

e Fast non-linear SVM evaluation (scales linearly with #SVs)

e (Classification using Intersection kernel SVMs is efficient, Maji et
al., CVPR 2008 — O(1) evaluation ~ 1000x faster on on large
datasets! (Also see the PAMI 2013 paper on my webpage)

e Approximate embeddings for kernels (Maji and Berg, Vedaldi
and Zisserman) — O(n) training ~ 100x faster on large datasets!
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