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• This week’s office hours are today after class 
• Canceling Wednesday’s office hours because … 

!

!

!

!

!

!

• Homework 4 due on Wednesday

Administrivia
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 
• Learning a dictionary — clustering using k-means 
• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers

Lecture outline

3Figure from Chatfield et al.,2011



Bag of features
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• Texture is characterized by the repetition of basic elements 
or textons 

• For stochastic textures, it is the identity of the textons, not 
their spatial arrangement, that matters

Origin 1: Texture recognition
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Origin 1: Texture recognition
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Universal texton dictionary

histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



• Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)

Origin 2: Bag-of-words models
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• Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 
• Learning a dictionary — clustering using k-means 
• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers
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• Regular grid or interest regions

Local feature extraction

12

blob detector



Normalize patch

Detect patches

Compute 
descriptor

Slide credit: Josef Sivic 13

Local feature extraction

Choices of descriptor: 
• SIFT 
• Filterbank histograms 
• The patch itself



…

Slide credit: Josef Sivic

Local feature extraction

Extract features from many images



• Origin and motivation of the “bag of words” model 
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• Extracting local features 
• Learning a dictionary — clustering using k-means 
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…

Learning a dictionary

Slide credit: Josef Sivic



Clustering

…

Slide credit: Josef Sivic

Learning a dictionary



Clustering

…
Visual vocabulary

Learning a dictionary

Slide credit: Josef Sivic



• Want to minimize sum of squared Euclidean distances 
between features xi and their nearest cluster centers mk 

 

 

Algorithm:!
• Randomly initialize K cluster centers 
• Iterate until convergence: 

• Assign each feature to the nearest center 
• Recompute each cluster center as the mean of all features assigned to it

Review: K-means clustering
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Example codebook
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…

Source: B. Leibe

Appearance codebook



Another codebook
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Appearance codebook
…

Source: B. Leibe



• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 
• Learning a dictionary — clustering using k-means 
• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers
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• Assigning words to features

Encoding methods
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Visual vocabulary

1

2 3

…

partition of space

Also called hard assignment



• Assigning words to features

Encoding methods
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Visual vocabulary

1

2 3

partition of space large quantization error

similar features

different words

hard assignment

1 0 0 0 0 1



• Assigning words to features

Encoding methods
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Visual vocabulary

1

2 3

partition of space

soft assignment

↵i / e�f(d(x,ci))

assign high weights to 
centers that are close

in practice non-zero to 
only k-nearest neighbors



• Assigning words to features

Encoding methods
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Visual vocabulary

1

2 3

partition of space

similar features

soft assignment

0.6 0 0.4 0.4 0 0.6

soft assignment

hard assignment

1 0 0 0 0 1

↵i / e�f(d(x,ci))



• What should be the size of the dictionary? 
• Too small: don’t capture the variability of the dataset 
• Too large: have too few points per cluster 
• The right size depends on the task and amount of data 

- e.g. instance retrieval (e.g. Nister) uses a vocabulary of 1 million, whereas 
recognition (e.g., texture) uses a vocabulary of about a hundred.  

• Speed of embedding 
• Tree structured vocabulary (e.g. Nister) 
• Hashing, product quantization 

• More accurate embeddings 
• Generalizations of soft embedding: LLC coding, sparse coding 
• Higher order statistics: Fisher vectors, VLAD, etc. 

Encoding considerations
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 
• Learning a dictionary — clustering using k-means 
• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers
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Spatial pyramids
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level 0

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: sum embeddings of local features within a region



Spatial pyramids
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level 0 level 1

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: sum embeddings of local features within a region

Same motivation as SIFT — keep coarse layout information



Spatial pyramids
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level 0 level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: sum embeddings of local features within a region

Same motivation as SIFT — keep coarse layout information



• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 
• Learning a dictionary — clustering using k-means 
• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers
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Bags of features representation
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I

image similarity = feature similarity

h = �(I)



• Euclidean distance: 
!

• L1 distance:  

• χ2 distance: 

• Histogram intersection (similarity): 
!

!

• Hellinger kernel (similarity):

Comparing features
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• Given a feature representation for images, how do we learn 
a model for distinguishing features from different classes?

Classifiers
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Zebra

Non-zebra

Decision 
boundary



• Given a feature representation for images, how do we learn 
a model for distinguishing features from different classes? 

• Examples of commonly used classifiers 
• Nearest neighbor classifiers 
• Linear classifiers: support vector machines

Classifiers
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• Assign label of nearest training data point to each test data 
point 

Nearest neighbor classifier
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from Duda et al.



• For a new point, find the k closest points from training data 
• Labels of the k points “vote” to classify

k-Nearest neighbor classifier
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k = 5



Linear classifiers
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• Find linear function (hyperplane) to separate positive and 
negative examples

Linear classifiers
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• Find hyperplane that maximizes the margin between the 
positive and negative examples

Support vector machines
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


• Find hyperplane that maximizes the margin between the 
positive and negative examples

Support vector machines
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MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

Distance between point 
and hyperplane: ||||

||
w
wx bi +⋅

For support vectors, 1±=+⋅ bi wx

Therefore, the margin is  2 / ||w|| 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


1. Maximize margin 2 / ||w|| 

2. Correctly classify all training data:  
 
 
 

Quadratic optimization problem: 

  

Finding the maximum margin hyperplane

43

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 
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• Solution: 
 
  

Finding the maximum margin hyperplane
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

Learned weight  
(nonzero only for support vectors)

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


• Solution: 
 
    w·xi +b = yi, for any support vector  

• Classification function (decision boundary):  
 

• Notice that it relies on an inner product between the test 
point x and the support vectors xi 

• Solving the optimization problem also involves computing 
the inner products xi · xj between all pairs of training points

Finding the maximum margin hyperplane
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 
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!

• Separable: 
!

!

• Non-separable: 
!

!

!

• C: tradeoff constant, ξi : slack variable (positive) 
• Whenever margin is ≥ 1, ξi = 0 
• Whenever margin is < 1, 

What if the data is not linearly separable?
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What if the data is not linearly separable?
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Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo

What if the data is not linearly separable?
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• Datasets that are linearly separable work out great: 
 

 

 

!
• But what if the dataset is just too hard?  

!

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

49Slide credit: Andrew Moore



Φ:  x → φ(x)

• General idea: the original input space can always be 
mapped to some higher-dimensional feature space where 
the training set is separable:

Nonlinear SVMs

50Slide credit: Andrew Moore



• The kernel trick: instead of explicitly computing the lifting 
transformation φ(x), define a kernel function K such that  
 
         K(x , y) = φ(x) · φ(y) 

!

 (the kernel function must satisfy Mercer’s condition) 
• This gives a nonlinear decision boundary in the original 

feature space:

Nonlinear SVMs
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


• Histogram intersection kernel:  
 
 

• Hellinger kernel:  
!

• Generalized Gaussian kernel:  
 
 

• D can be L1, Euclidean, χ2 distance, etc.

Non-linear kernels for histograms
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http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf


1. Pick an image representation (in our case, bag of features) 
2. Pick a kernel function for that representation 
3. Feed the kernel and features into your favorite SVM solver 

to obtain support vectors and weights 
4. At test time: compute kernel values for your test example 

and each support vector, and combine them with the 
learned weights to get the value of the decision function

Summary: SVMs for image classification
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Lots of software available! LIBSVM, LIBLINEAR, SVMLight



• Many options! 
• For example, we have to obtain a multi-class SVM by 

combining multiple two-class SVMs  
• One vs. rest 

• Training: learn an SVM for each class vs. the rest 
• Testing: apply each SVM to test example and assign to it the class of the 

SVM that returns the highest decision value 

• One vs. one 
• Training: learn an SVM for each pair of classes 
• Testing: each learned SVM “votes” for a class to assign to the test 

example

What about multi-class SVMs?
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• http://www.kernel-machines.org/software

http://www.kernel-machines.org/software


• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 
• Learning a dictionary — clustering using k-means 
• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers
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Putting it all 
 together



Results: scene category dataset
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Multi-class classification results 
(100 training images per class)



Results: Caltech-101 dataset
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Multi-class classification results (30 training images per class)



• All about embeddings (detailed experiments and code) 
• K. Chatfield et al., The devil is in the details: an evaluation of 

recent feature encoding methods, BMVC 2011 
• http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/ 
• Includes discussion of advanced embeddings such as Fisher 

vector representations and locally linear coding (LLC) 

• All about SVMs — http://research.microsoft.com/pubs/67119/svmtutorial.pdf 
• Fast non-linear SVM evaluation (scales linearly with #SVs) 

• Classification using Intersection kernel SVMs is efficient, Maji et 
al., CVPR 2008 — O(1) evaluation ~ 1000x faster on on large 
datasets! (Also see the PAMI 2013 paper on my webpage) 

• Approximate embeddings for kernels (Maji and Berg, Vedaldi 
and Zisserman) — O(n) training ~ 100x faster on large datasets! 

Further thoughts and readings …
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http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/
http://research.microsoft.com/pubs/67119/svmtutorial.pdf

