CMPSCI 670: Computer Vision Introduction to recognition

University of Massachusetts, Amherst October 27, 2014

Instructor: Subhransu Maji

Today

• Administrivia:

- Project abstracts due today
 - email the pdf to me
- Office hours wednesday today 3:45 4:45 pm (after class)
- Outline for today/tomorrow's class
 - What are the recognition problems in computer vision?
 - A historic perspective of methods

Object Recognition: Overview and History

Slides adapted from Svetlanan Lazebnik, Alex Berg, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

Scene categorization

5

Image annotation/tagging

Object detection

Activity recognition

Image parsing

Image understanding?

How many visual object categories are there?

http://wexler.free.fr/library/files/biederman%20(1987)%20recognition-by-components.%20a%20theory%20of%20human%20image%20understanding.pdf

Biederman 1987 11

Recognition is all about modeling variability

Variability:

Camera position Illumination Within-class variation Background, occlusion

History of ideas in recognition

1960s – early 1990s: the geometric era

Roberts (1965); Lowe (1987); Faugeras & Hebert (1986); Grimson & Lozano-Perez (1986); Huttenlocher & Ullman (1987)

Recall: Alignment

Alignment: fitting a model to a transformation between pairs of features (*matches*) in two images

Recognition as an alignment problem: Block world

L. G. Roberts, <u>Machine</u> <u>Perception of Three</u> <u>Dimensional Solids</u>, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral description of the scene, formed automatically from the single image. e) The 3-d scene displayed with a viewpoint different from the original image to demonstrate its accuracy and completeness. (b) - e) are taken from [64] with permission MIT Press.)

J. Mundy, Object Recognition in the Geometric Era: a Retrospective, 2006

Alignment: Huttenlocher & Ullman (1987)

Duda & Hart (1972); Weiss (1987); Mundy et al. (1992-94); Rothwell et al. (1992); Burns et al. (1993)

From object instances to object categories

ACRONYM (Brooks and Binford, 1981) Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)

Recognition by components

Biederman (1987)

http://en.wikipedia.org/wiki/Recognition_by_Components_Theory

Generalized cylinders Ponce et al. (1989)

General shape primitives?

Forsyth (2000)

Zisserman et al. (1995)

History of ideas in recognition

1960s – early 1990s: the geometric era

1990s: appearance-based models

Empirical models of image variability

Appearance-based techniques

Turk & Pentland (1991); Murase & Nayar (1995); etc.

Eigenfaces (Turk & Pentland, 1991)

Experimental	Correct/Unknown Recognition Percentage				
Condition	Lighting	Orientation	Scale		
Forced classification	96/0	85/0	64/0		
Forced 100% accuracy	100/19	100/39	100/60		
Forced 20% unknown rate	100/20	94/20	74/20		

Color Histograms

Swain and Ballard, Color Indexing, IJCV 1991.

Appearance manifolds

H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from appearance, IJCV 1995

Limitations of global appearance models

Requires global registration of patterns

Not robust to clutter, occlusion, geometric transformations

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches

Sliding window approaches

Sliding window approaches

		*			1771	
			**		[1]	
44						
	16235			<u>+</u>	125	

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches

Late 1990s: local features

Local features for object instance recognition

D. Lowe (1999, 2004)

Large-scale image search

Combining local features, indexing, and spatial constraints

Large-scale image search

Combining local features, indexing, and spatial constraints

Philbin et al. '07

Large-scale image search

Combining local features, indexing, and spatial constraints

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models

Parts-and-shape models

Model:

- Object as a set of parts
- Relative locations between parts
- Appearance of part

Constellation models

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)

 $\Pr(\Pr_{\text{tor}}, \Pr_{\text{arm}}, \dots | \text{Im}) \xrightarrow{\propto} \prod_{i,j} \Pr(P_i | P_j) \prod_i \Pr(\text{Im}(P_i))$ $\underset{\text{part geometry}}{\overset{i}{\uparrow}} \Pr(\text{Im}(P_i))$

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models

Mid/Late-2000s: bags of features, fully learned models

Bag-of-features models

Objects as texture

All of these are treated as being the same

No distinction between foreground and background: scene recognition?

Learning algorithms to the rescue.

Learned part-based models

Poselet detectors: Bourdev, Maji and Malik

Deformable part-based models, Girshick, Felzenszwalb, Ramanan, McAllester

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features

Present trends: "big data", context, attributes, combining geometry and recognition, advanced scene understanding tasks, <u>deep learning</u>

Global appearance models revisited

The "gist" of a scene: Oliva & Torralba (2001)

http://people.csail.mit.edu/torralba/code/ spatialenvelope/

New applications in graphics

J. Hays and A. Efros, Scene Completion using Millions of Photographs, SIGGRAPH 2007

Geometric context

D. Hoiem, A. Efros, and M. Herbert, Putting Objects in Perspective, CVPR 2006

Geometry and recognition

V. Hedau, D. Hoiem, and D. Forsyth, <u>Recovering the Spatial</u> <u>Layout of Cluttered Rooms</u>, ICCV 2009.

Geometry and recognition

A. Gupta, A. Efros and M. Hebert, <u>Blocks World Revisited: Image Understanding Using</u> <u>Qualitative Geometry and Mechanics</u>, ECCV 2010

Recognition from RGBD Images

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake, <u>Real-</u> <u>Time Human Pose Recognition in Parts from a Single Depth Image</u>, CVPR 2011

Attributes for recognition

A. Farhadi, I. Endres, D. Hoiem, and D Forsyth, <u>Describing Objects by their</u> <u>Attributes</u>, CVPR 2009

Human "in the loop" recognition

Branson S., Wah C., Babenko B., Schroff F., Welinder P., Perona P., Belongie S., "Visual Recognition with Humans in the Loop", European Conference on Computer Vision (ECCV), Heraklion, Crete, Sept., 2010.

Crowdsourcing

- Large datasets become the norm (real world settings)
 - LabelMe, PASCAL VOC, ImageNet
 - Enable new machine learning methods (e.g., deep learning)

http://www.blogging4jobs.com/hr/solve-your-workplace-issues-by-crowdsourcing/

amazon mechanical turk

Understating objects in detail

OID:Aircraft Benchmark

aeroplane facing-direction: SW; is-airliner: no; iscargo-plane: no; is-glider: no; is-military-plane: yes; ispropellor-plane: yes; is-seaplane: no; plane-location: on ground/water; plane-size: medium plane; wing-type: single wing plane; undercarriage-arrangement: onefront-two-back; airline: UK-Air Force; model: Short S-312 Tucano T1 2; 2 vertical stabilizer tail-hasengine: no-engine 3 nose has-engine-or-sensor: has-

engine ving wing-has-engine: no-engine vindercarriage cover-type: retractable; group-type: 1-wheel-1-axle; location: front-middle vindercarriage cover-type: retractable; group-type: 1-wheel-1-axle; location: back-left vindercarriage cover-type: retractable; group-type: 1-wheel-1-axle; location: back-right.

Vedaldi et al., CVPR 14

Fine-grained recognition

many related classes

often confused

Toy Poodle

C-47

2012 GMC Savana Van

2007 Chevrolet Express Cargo Van

57

Sentence generation

This is a photograph of one sky, one road and one bus. The blue sky is above the gray road. The gray road is near the shiny bus. The shiny bus is near the blue sky.

This is a picture of one sky, one road and one sheep. The gray sky is over the gray road. The gray sheep is by the gray road.

There are two aeroplanes. The first shiny aeroplane is near the second shiny aeroplane.

Here we see one road, one sky and one bicycle. The road is near the blue sky, and near the colorful bicycle. The colorful bicycle is within the blue sky.

There are one cow and one sky.

The golden cow is by the blue sky.

Here we see two persons, one sky and one aeroplane. The first black person is by the blue sky. The blue sky is near the shiny aeroplane. The second black person is by the blue sky. The shiny aeroplane is by the first black person, and by the second black person.

There are one dining table, one chair and two windows. The wooden dining table is by the wooden chair, and against the first window, and against the second white window. The wooden chair is by the first window, and by the second white window. The first window is by the second white window.

This is a picture of two dogs. The first dog is near the second furry dog.

G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. Berg, T. Berg, <u>Baby Talk: Understanding and</u> <u>Generating Simple Image Descriptions</u>, CVPR 2011

Deep learning

HOME PAG	ET	ODAY'S PAPER	MOST	POPULAR	R U.S. Edition 🔻				8		
The New York Times				Tec	:hno	Day logy					
WORLD	U.S.	N.Y. / REGIO	N BUSH	NESS	TECHNOL	OGY	SCIENCE	HEALTH	SPORTS	OPINION	

How Many Computers to Identify a Cat? 16,000

An image of a cat that a neural network taught itself to recognize.

By JOHN MARKOFF Published: June 25, 2012

NY Times article

Recent deep learning breakthroughs...

ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton NIPS 2014

96 filters learned in layer 1

Further thoughts and readings

- Chapter 14, Szeliski's book
- Think of the applications of computer vision around you