CMPSCI 670: Computer Vision Grouping

University of Massachusetts, Amherst October 14, 2014

Instructor: Subhransu Maji

Slides credit: Kristen Grauman and others

Administrivia

- Final project guidelines posted
- Milestones
 - October 27: Abstract due
 - December 1, 3: Project presentations
 - December 13: Final report due
- Final project is graded as **two** homework assignments
 - The scope of the project should be roughly equal to two homework assignments.
 - Scales linearly with the team size.
 - Form your own teams.
- Alternatively, you can do a literature survey (solo)

Outline

- What are grouping problems in vision?
- Inspiration from human perception
 - Gestalt properties
- Bottom-up segmentation via clustering
 - Algorithms:
 - Mode finding and mean shift: k-means, mean-shift
 - Graph-based: graph cuts, normalized cuts
 - Features: color, texture, ...
 - Quantization for texture summaries

Grouping in vision

- Goals:
 - Gather features that belong together
 - Obtain an intermediate representation that compactly describes key image or video parts for further processing
 - This is a computational complexity argument

Examples of grouping in vision

[Figure by J. Shi]

Determine image regions

[http://poseidon.csd.auth.gr/LAB_RESEARCH/Latest/imgs/ SpeakDepVidIndex_img2.jpg]

Group video frames into shots

[Figure by Wang & Suter] Figure-ground

Grouping in vision

- Goals:
 - Gather features that belong together
 - Obtain an intermediate representation that compactly describes key image (video) parts
- Top down vs. bottom up segmentation
 - Top down: pixels belong together because they are from the same object
 - Bottom up: pixels belong together because they look similar
 - Hard to measure success
 - What is interesting depends on the application

What are the groups?

121.2

Questions ...

- What things should be grouped?
- What cues indicate grouping?

Gestalt

- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/ features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

Similarity

Similarity can occur in the form of shape, color, shading or other qualities.

Symmetry

http://themetapicture.com/the-average-woman-from-each-country/

Common fate

Image credit: Arthus-Bertrand (via F. Durand)

Proximity

Illusory/subjective contours

Interesting tendency to explain by occlusion

Continuity, explanation by occlusion

Grouping phenomena in real life

Forsyth & Ponce, Figure 14.7

Grouping phenomena in real life

Forsyth & Ponce, Figure 14.7

Gestalt

- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/ features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)
- Inspiring observations/explanations; challenge remains how to best map to algorithms.

Outline

- What are grouping problems in vision?
- Inspiration from human perception
 - Gestalt properties
- Bottom-up segmentation via clustering
 - Algorithms:
 - Mode finding and mean shift: k-means, mean-shift
 - Graph-based: graph cuts, normalized cuts
 - Features: color, texture, ...
 - Quantization for texture summaries

The goals of segmentation

Separate image into coherent "objects"

image

human segmentation

The goals of segmentation

Separate image into coherent "objects"

Group together similar-looking pixels for efficiency of further processing

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

"superpixels"

Image segmentation: toy example

- These intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., segment the image based on the intensity feature.
- What if the image isn't quite so simple?

- Now how to determine the three main intensities that define our groups?
- We need to *cluster.*

- Goal: choose three "centers" as the representative intensities, and label every pixel according to which of these centers it is nearest to.
- Best cluster centers are those that minimize SSD between all points and their nearest cluster center ci:

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$
recall *k*-means

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity** similarity

Feature space: intensity value (1-d)

K=3

quantization of the feature space; segmentation label map

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on color similarity

Feature space: color value (3-d)

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity** similarity

Clusters based on intensity similarity don't have to be spatially coherent.

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on intensity+position similarity

Both regions are black, but if we also include **position** (**x**,**y**), then we could group the two into distinct segments; way to encode both similarity & proximity.

• Color, brightness, position alone are not enough to distinguish all regions...

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **texture** similarity

Filter bank of 24 filters

Feature space: filter bank responses (e.g., 24-d)

Recall: texture representation example

statistics to summarize patterns in small windows

Segmentation with texture features

- Find "textons" by clustering vectors of filter bank outputs
- Describe texture in a window based on texton histogram

Malik, Belongie, Leung and Shi. IJCV 2001.

Image segmentation example

Outline

- What are grouping problems in vision?
- Inspiration from human perception
 - Gestalt properties
- Bottom-up segmentation via clustering
 - Algorithms:
 - Mode finding and mean shift: k-means, mean-shift
 - Graph-based: graph cuts, normalized cuts
 - Features: color, texture, ...
 - Quantization for texture summaries

K-means: pros and cons

<u>Pros</u>

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

<u>Cons/issues</u>

- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed

(B): Ideal clusters

(B): k-means clusters

Mean shift algorithm

The mean shift algorithm seeks modes or local maxima of density in the feature space

Feature space (L*u*v* color values)

image

Computing the Mean Shift

Mean Shift procedure:

For each point, repeat till convergence:

Compute mean shift vector

Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift clustering results

- Pros:
 - Does not assume shape on clusters
 - One parameter choice (window size)
 - Generic technique
 - Find multiple modes
- <u>Cons</u>:
 - Selection of window size
 - Is rather expensive: O(dN^2) per iteration
 - Does not work well for high-dimensional features