#### **CMPSCI 670: Computer Vision** Texture continued ...

University of Massachusetts, Amherst October 8, 2014

Instructor: Subhransu Maji

Slides credit: Kristen Grauman and others

## Administrivia

- Homework 1 grade posted:
  - you should have received an email.
  - questions? email me and I will resolve it with the graders.
- Today's office hours are cancelled
  - Instead having it tomorrow, i.e., Th 3:45 4:45 PM
  - DLS speaker Richard Sutton (go to his talk instead)



#### **Distinguished Lecturer Series**

Richard Sutton University of Alberta Department of Computing Science

Wednesday, October 8, 2014 4:00pm - 5:00pm Computer Science Building, Room 151 Faculty Host: <u>Andrew Barto</u>

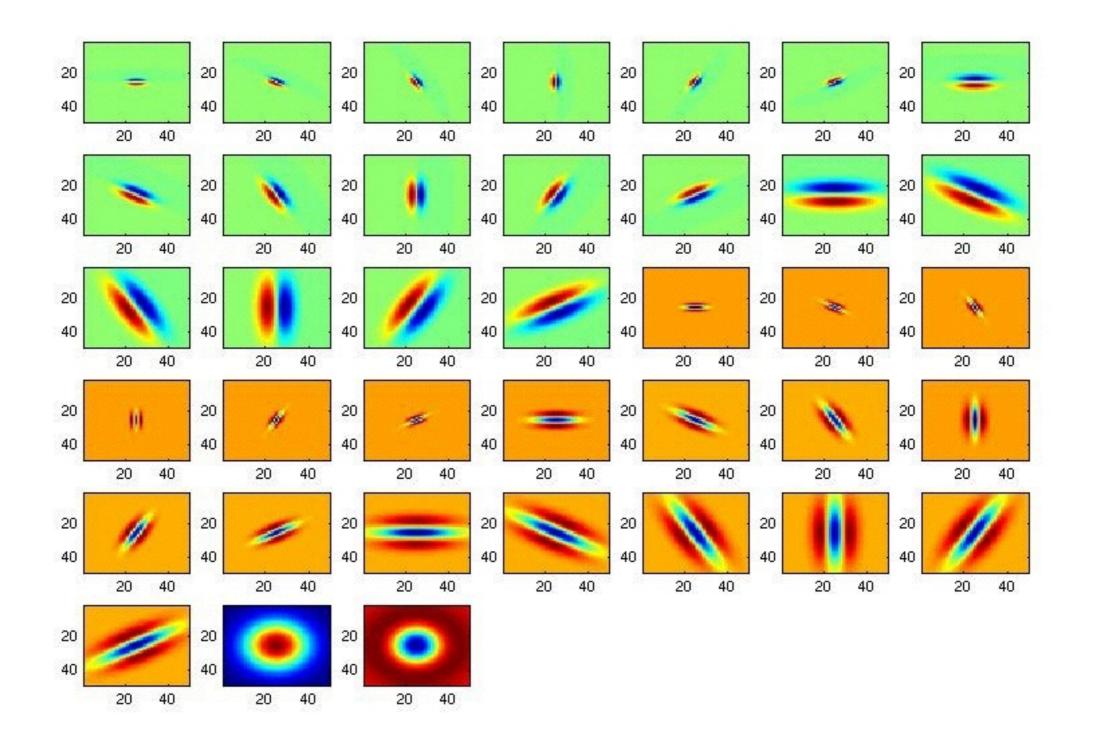
#### "Temporal-difference Learning and the Coming of Artificial Intelligence"

## Texture-related tasks

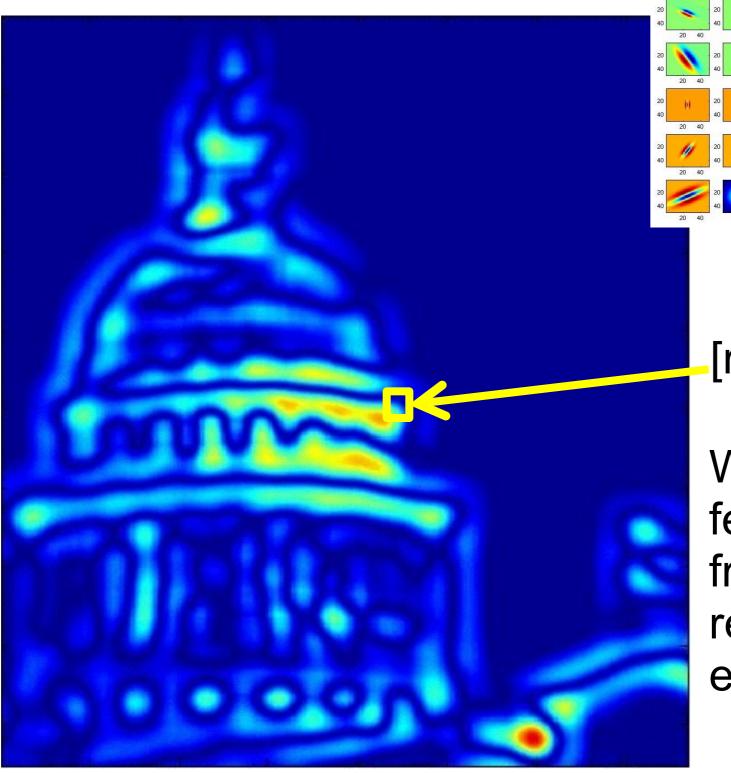
#### • Shape from texture

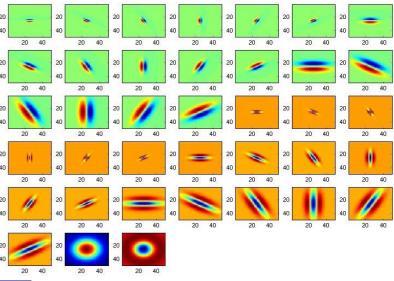
- Estimate surface orientation or shape from image texture
- Segmentation/classification from texture cues
  - Analyze, represent texture
  - Group image regions with consistent texture
- Synthesis
  - Generate new texture patches/images given some examples

#### Recap: Filter bank



4





[r1, r2, ..., r38]

We can form a feature vector from the list of responses at each pixel.

# K-means for vector quantization

Given a set of observations  $(x_1, x_2, ..., x_n)$ , where each observation is a d-dimensional real vector, k-means clustering aims to partition the **n** observations into **k** ( $\leq$  **n**) sets **S** = {*S*<sub>1</sub>, *S*<sub>2</sub>, ..., *S*<sub>k</sub>} so as to minimize the within-cluster sum of squares (WCSS). In other words, its objective is to find:

$$\operatorname*{arg\,min}_{\mathbf{s}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_{i}} \|\mathbf{x} - \boldsymbol{\mu}_{i}\|^{2}$$

where  $\mu_i$  is the mean of points in  $S_i$ .

Easy to compute **µ** given **S** and vice versa.

http://en.wikipedia.org/wiki/K-means\_clustering

# Lloyd's algorithm for k-means

- Initialize k centers by picking k-points randomly
- Repeat till convergence (or max iterations)
  - Assign each point to the nearest center (assignment step)
  - Estimate the mean of each group (update step)

MATLAB [idx, c] = kmeans(X, k)

- Simple, fast and works well in practice
- But can be unstable
  - Run multiple times and the best solution (one with the smallest WCSS)
  - Better initializations are possible (e.g. kmeans++)

## Textons in images

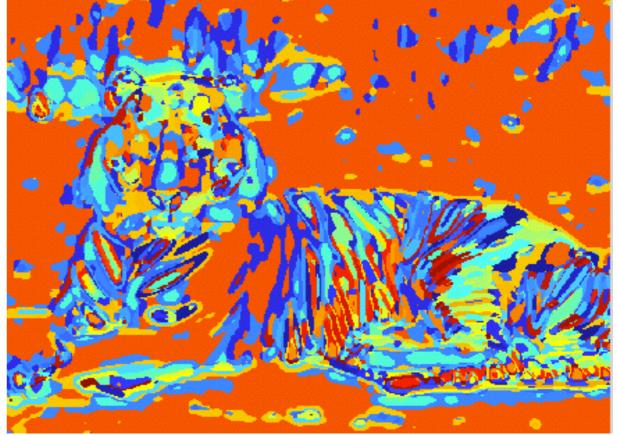
#### image



#### convolution with f.b.

# cluster square aggregate

#### clustering into k=64 centers



(k-means)

## Classifying materials, "stuff"



#### Figure by Varma & Zisserman

Global texton histogram is a good representation

### Texture-related tasks

#### • Shape from texture

- Estimate surface orientation or shape from image texture
- Segmentation/classification from texture cues
  - Analyze, represent texture
  - Group image regions with consistent texture

#### Synthesis

 Generate new texture patches/images given some examples

### Texture synthesis

- Goal: create new samples of a given texture
- Many applications: virtual environments, hole-filling, texturing surfaces







### The challenge

Need to model the whole spectrum: from repeated to stochastic texture



repeated



stochastic



Both?

Alexei A. Efros and Thomas K. Leung, "Texture Synthesis by Non-parametric Sampling," Proc. International Conference on Computer Vision (ICCV), 1999.

#### Markov chains

#### Markov chain

- A *sequence* of random variables  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$
- $\mathbf{X}_t$  is the **state** of the model at time t

$$\mathbf{x}_1 \longrightarrow \mathbf{x}_2 \longrightarrow \mathbf{x}_3 \longrightarrow \mathbf{x}_4 \longrightarrow \mathbf{x}_5$$

- Markov assumption: each state is dependent only on the previous one
  - dependency given by a conditional probability:

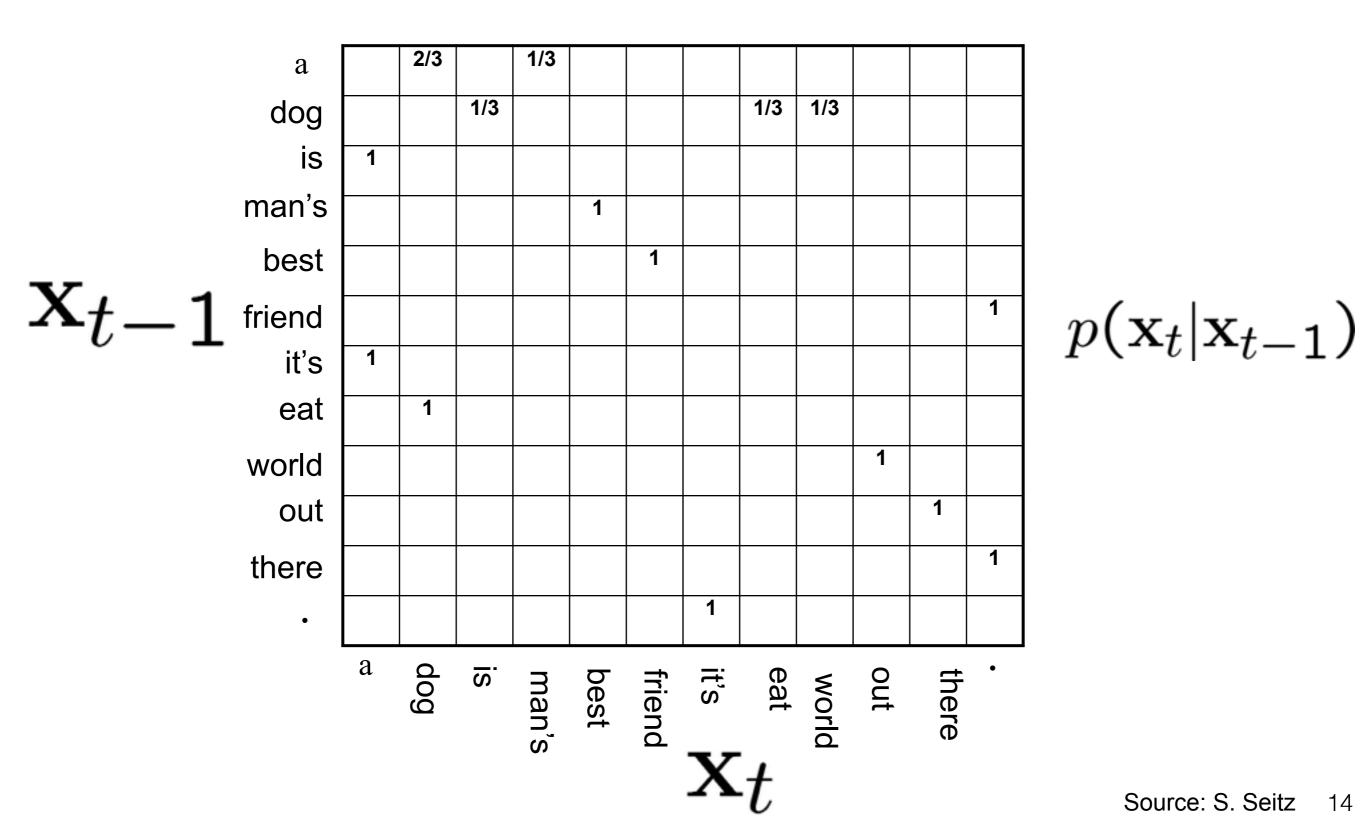
$$p(\mathbf{x}_t | \mathbf{x}_{t-1})$$

- The above is actually a *first-order* Markov chain
- An *N'th-order* Markov chain:

$$p(\mathbf{x}_t | \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-N})$$

## Markov Chain Example: Text

#### "A dog is a man's best friend. It's a dog eat dog world out there."



## Text synthesis

Create plausible looking poetry, love letters, term papers, etc. Most basic algorithm

- 1. Build probability histogram
  - find all blocks of N consecutive words/letters in training documents
  - compute probability of occurrence  $p(\mathbf{x}_t | \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-(n-1)})$
- 2. Given words  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{k-1}$ 
  - compute  $\mathbf{x}_k$  by sampling from  $p(\mathbf{x}_t | \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-(n-1)})$

#### WE NEED TO EAT CAKE

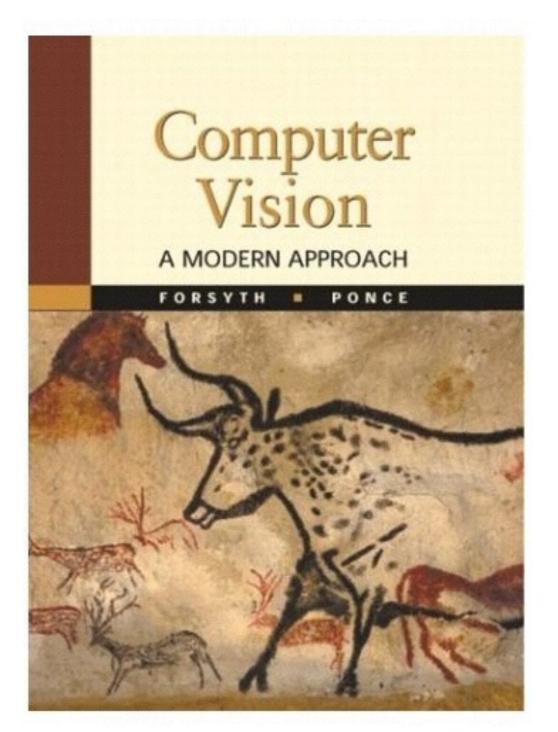
# Text synthesis

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Dewdney, "A potpourri of programmed prose and prosody" Scientific American, 1989.

### Synthesizing Computer Vision text

 What do we get if we extract the probabilities from a chapter on Linear Filters, and then synthesize new statements?



Check out Yisong Yue's website implementing text generation: build your own text Markov Chain for a given text corpus. <u>http://www.yisongyue.com/shaney/index.php</u>

Kristen Grauman

## Synthesized text

- This means we cannot obtain a separate copy of the best studied regions in the sum.
- All this activity will result in the primate visual system.
- The response is also Gaussian, and hence isn't bandlimited.
- Instead, we need to know only its response to any data vector, we need to apply a low pass filter that strongly reduces the content of the Fourier transform of a very large standard deviation.
- It is clear how this integral exist (it is sufficient for all pixels within a 2k +1 × 2k +1 × 2k +1 × 2k + 1 — required for the images separately.

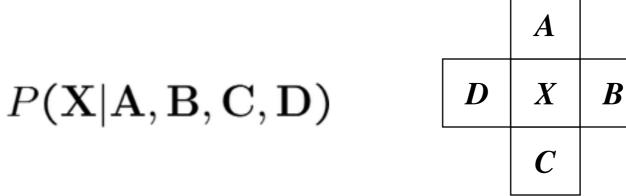
### Markov Random Field

#### A Markov random field (MRF)

• generalization of Markov chains to two or more dimensions.

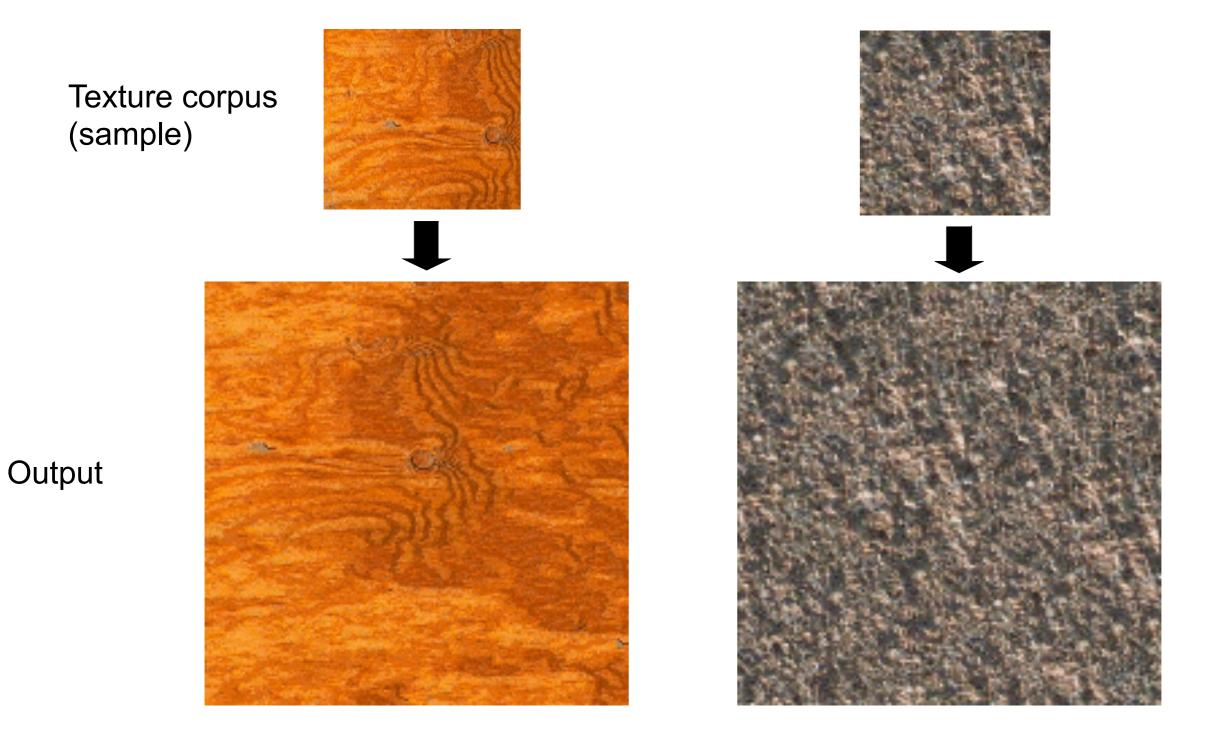
#### First-order MRF:

 probability that pixel X takes a certain value given the values of neighbors A, B, C, and D:



### Texture synthesis

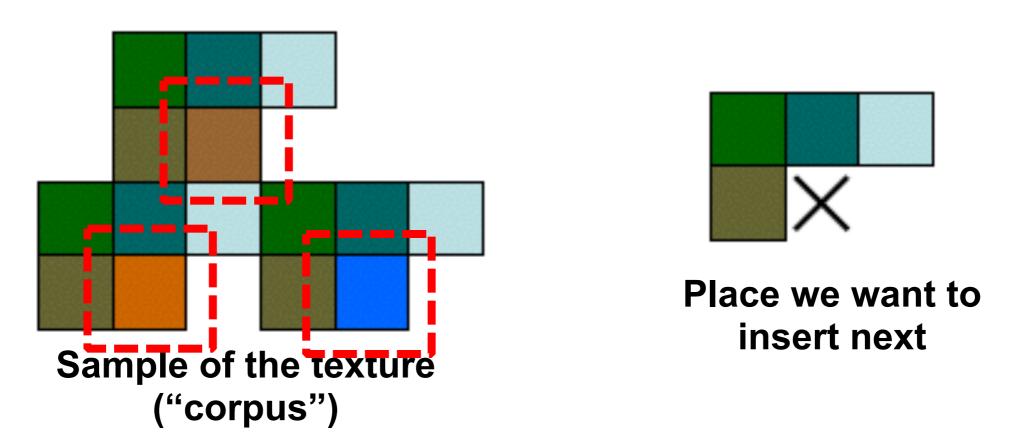
#### Can apply 2D version of text synthesis



Efros & Leung, ICCV 99

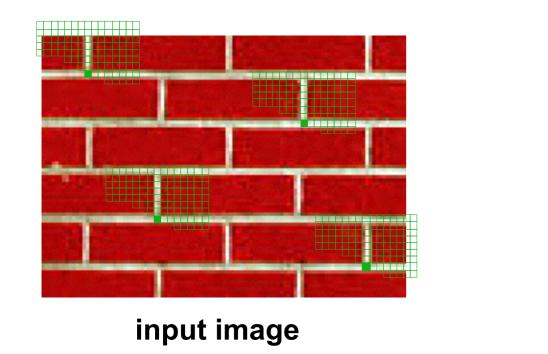
# Texture synthesis: intuition

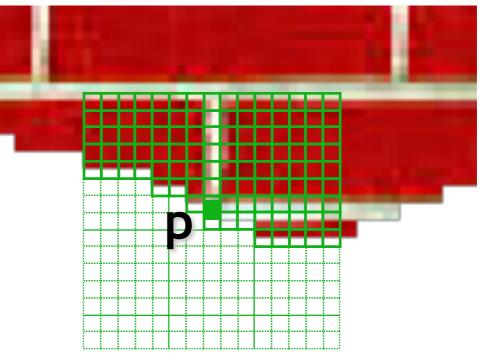
- Before, we inserted the next word based on existing nearby words...
- Now we want to insert pixel intensities based on existing nearby pixel values.



Distribution of a value of a pixel is conditioned on its neighbors alone.

# Synthesizing one pixel

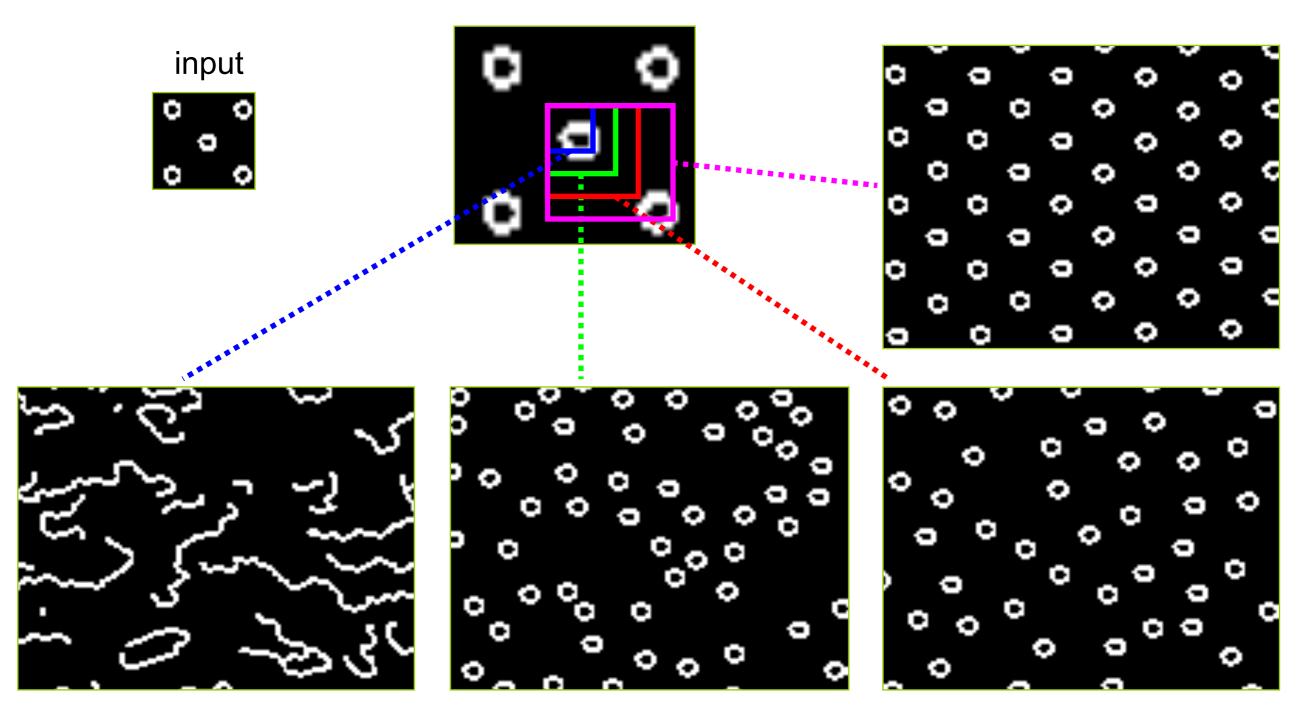




synthesized image

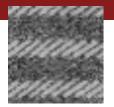
- What is  $P(\mathbf{x}|$  neighborhood of pixels around x)?
- Find all the windows in the image that match the neighborhood
- To synthesize **x** 
  - pick one matching window at random
  - assign **x** to be the center pixel of that window
  - An exact neighbourhood match might not be present, so find the best matches using SSD error and randomly choose between them, preferring better matches with higher probability

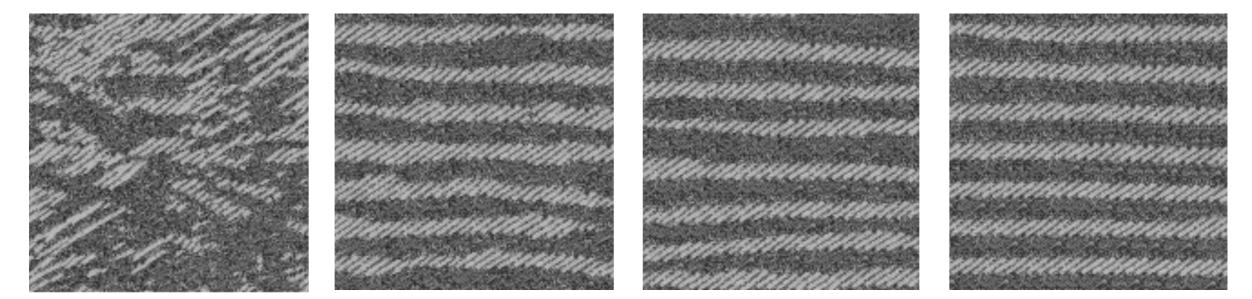
#### Neighborhood window

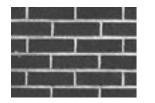


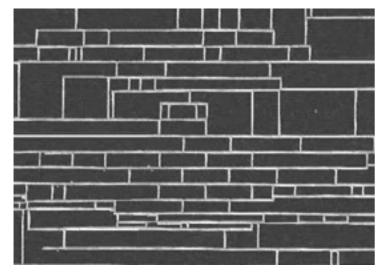
Slide from Alyosha Efros, ICCV 1999 23

## Varying window size

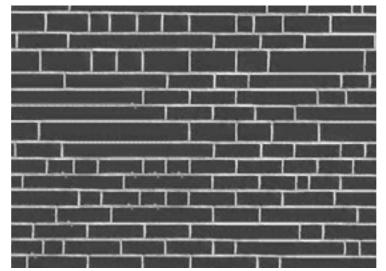


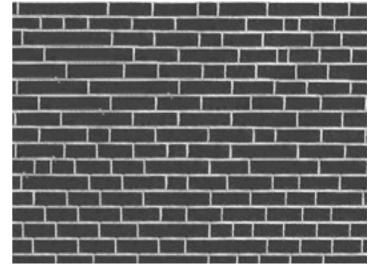




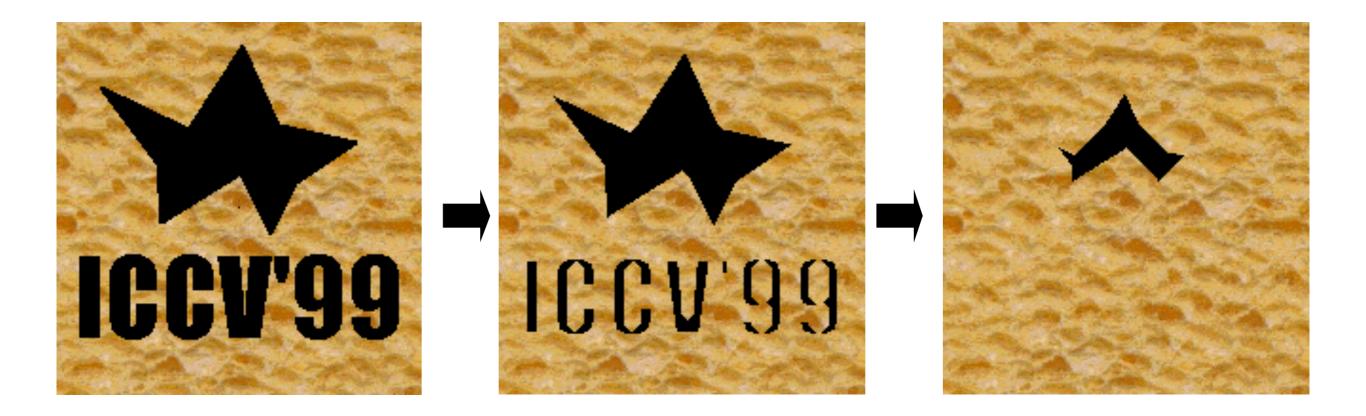


Increasing window size





### Growing Texture



• Starting from the initial image, "grow" the texture one pixel at a time

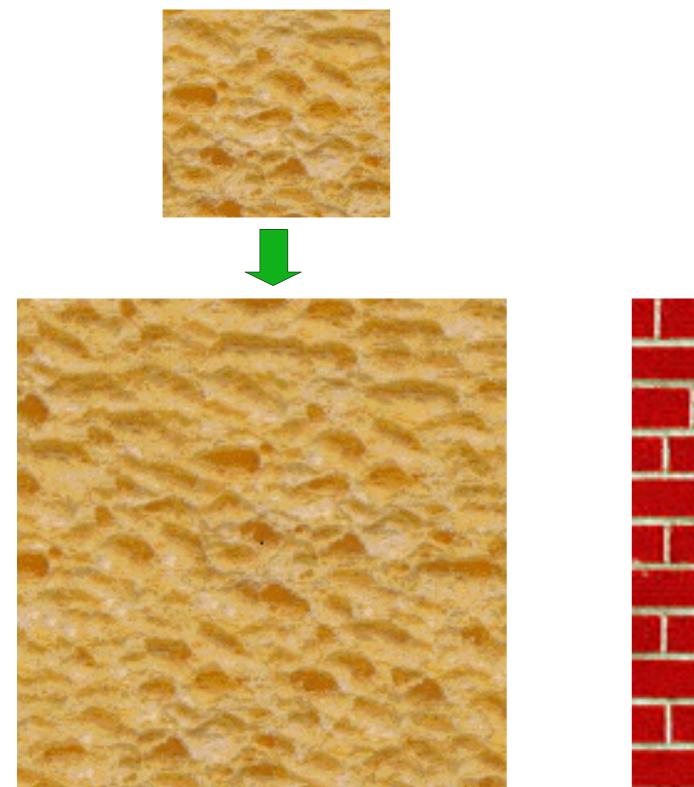
#### Synthesis results

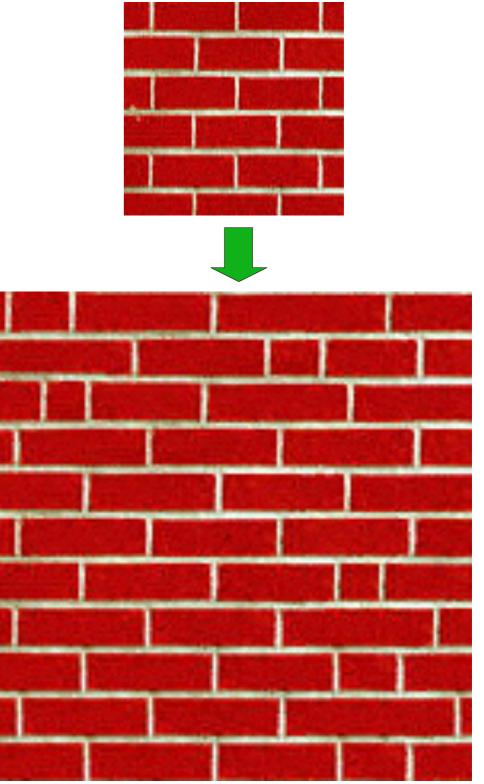
french canvas rafia weave

### Synthesis results

#### white bread

brick wall





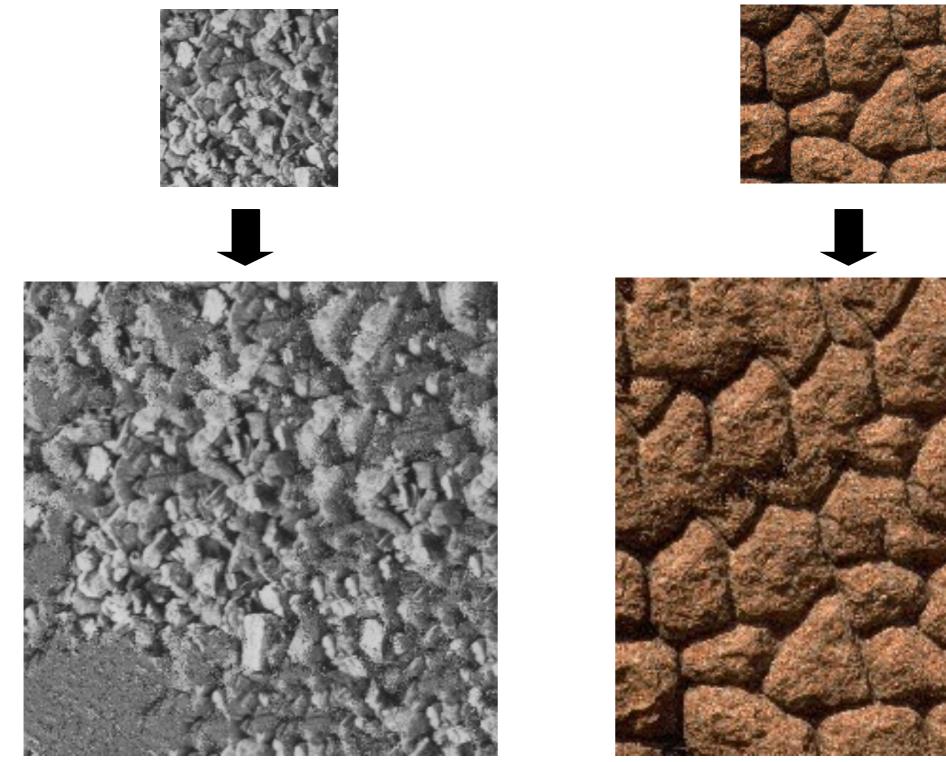
Slide from Alyosha Efros, ICCV 1999

#### Synthesis results

r Dick Gephardt was fai rful riff on the looming ' nly asked, "What's your tions?" A heartfelt sigh story about the emergen es against Clinton. "Boy g people about continuin ardt began, patiently obs s, that the legal system h g with this latest tanger

thaim. them . "Whephartfe lartifelintomimen el ck Clirticout omaim thartfelins fout sanetc the ry onst wartfe lck Gephtoomimeationl sigab Chiooufit Clinut Cll riff on, hat's yordn, parut tly : ons ycontonsteht wasked, paim t sahe loo riff on l nskoneploourtfeas leil A nst Clit, "Weontongal s k Cirtioouirtfepe.ong pme abegal fartfenstemem itiensteneltorydt telemephinsverdt was agemer. ff ons artientont Cling peme as rtfe atith, "Boui s hal s fartfelt sig pedril dt ske abounutie aboutioo tfeonewas you aboun thardt that ins fain, ped, ains. them, pabout wasy arfut couldy d, ln A h ole emthrängboomme agas fa bontinsyst Clinüt : ory about continst Clipeopinst Cloke agatiff out ( stome minemen fly ardt beoraboul n, thenly as t G cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbout cout congagal comininga: mifmst Clivy abon al coountha.emungairt tf oun Whe looorystan loontieph. intly on, theoplegatick ( iul fatiezontly atie Diontiomt wal s f thegàe ener nthahgat's enenhimas fan, "intchthory abons y

#### **Failure Cases**

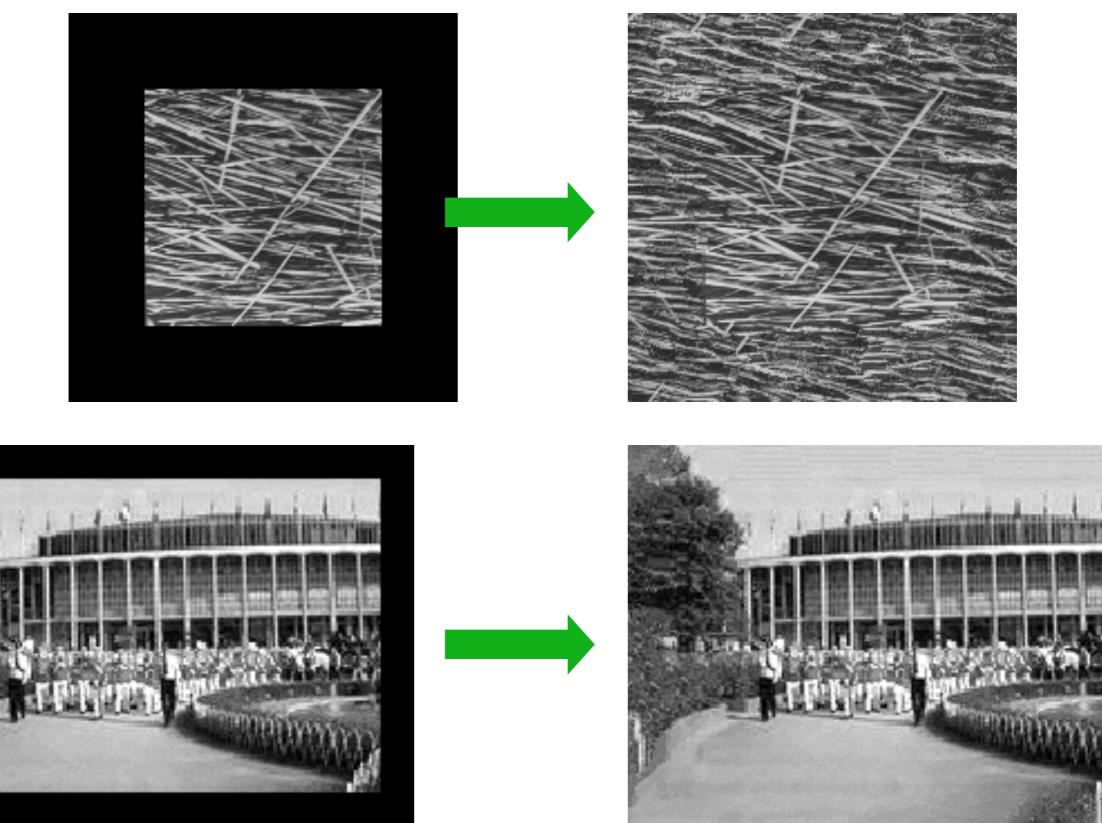


#### Growing garbage

Slide from Alyosha Efros, ICCV 1999

Verbatim copying

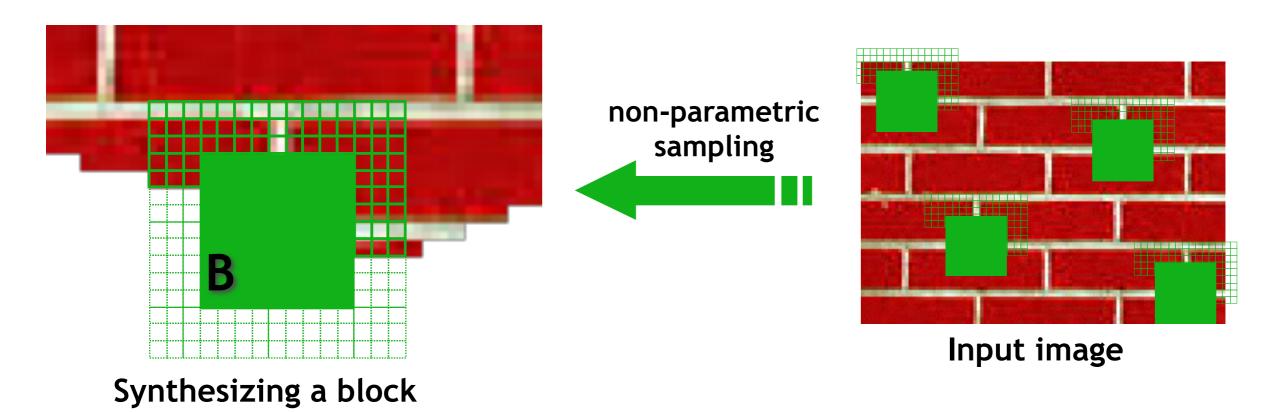
### Extrapolation



## Texture synthesis

- The Efros & Leung algorithm
  - Simple
  - Surprisingly good results
  - Synthesis is easier than analysis!
  - ... but can be very slow
    - [n m] image synthesis from [p q] image requires nxmxpxq patch comparisons

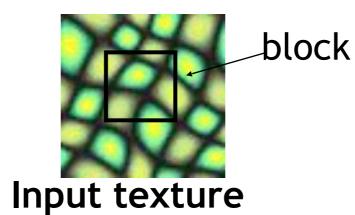
### Image Quilting [Efros & Freeman 2001]

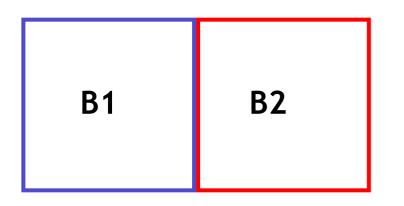


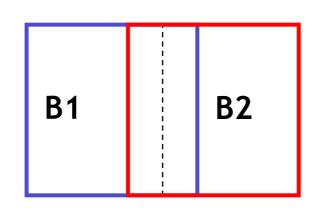
<u>Observation</u>: neighbor pixels are highly correlated

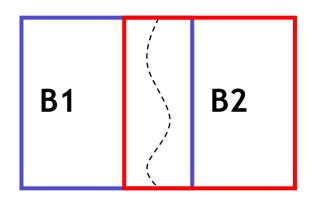
#### **Idea:** unit of synthesis = block

- Exactly the same but now we want P(B|N(B))
- Much faster: synthesize all pixels in a block at once



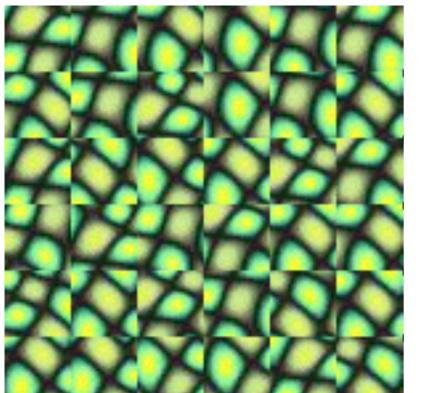


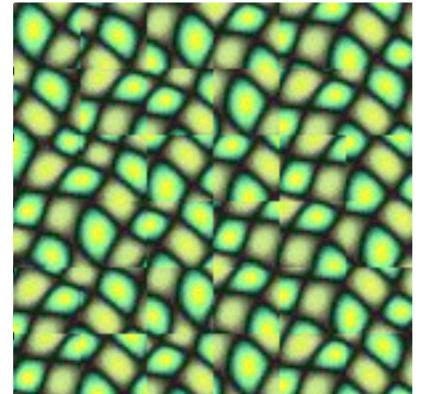


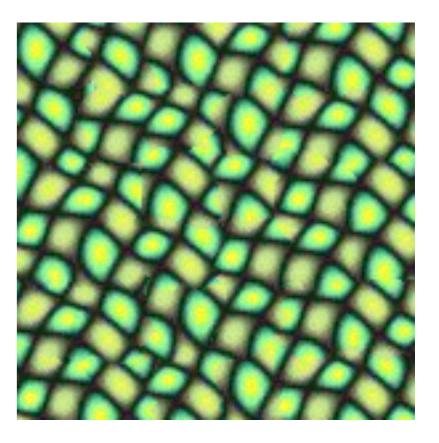


Random placement of blocks Neighboring blocks constrained by overlap

Minimal error boundary cut



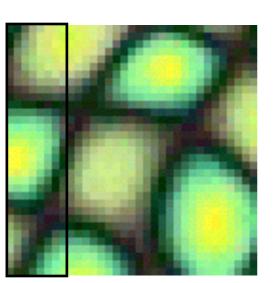


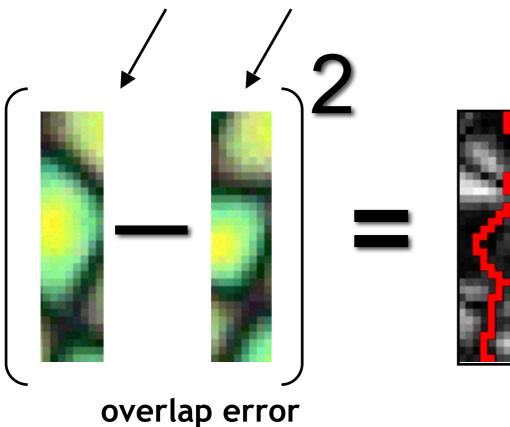


### Minimal error boundary

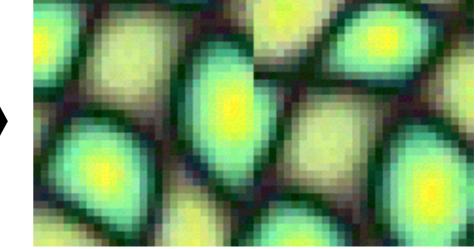
overlapping blocks

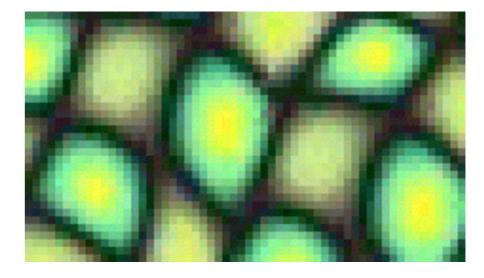






vertical boundary





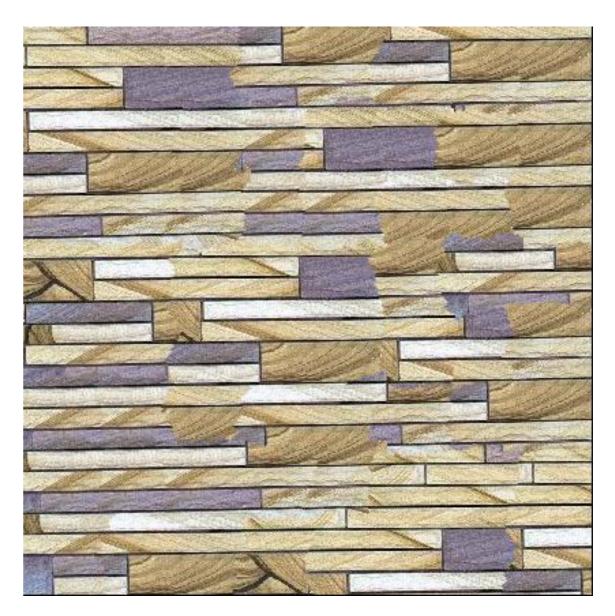
min. error boundary

Slide from Alyosha Efros

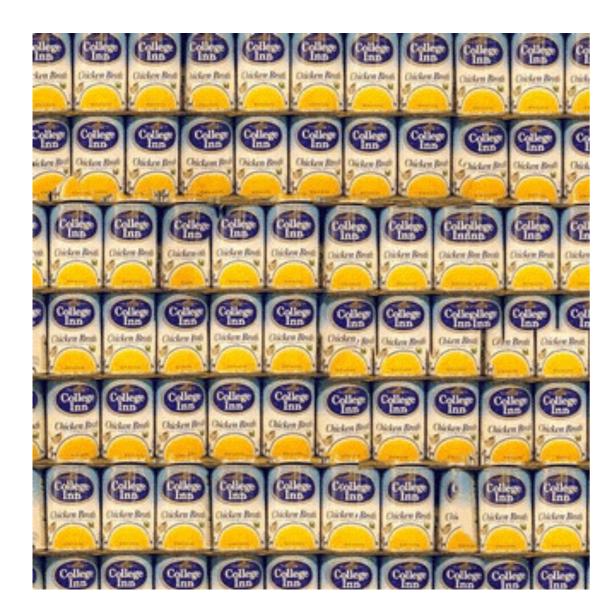




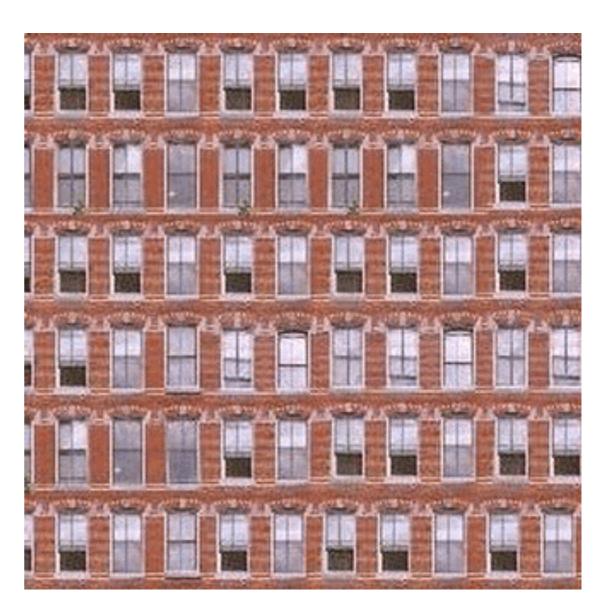












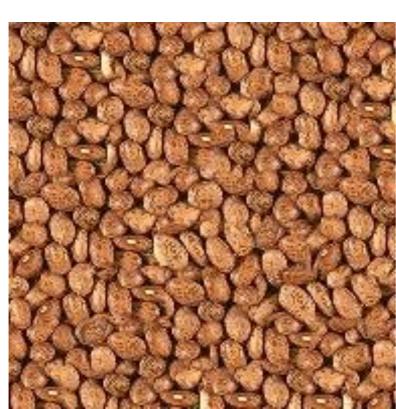






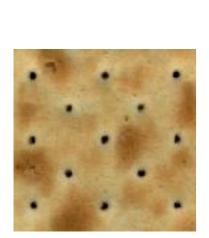


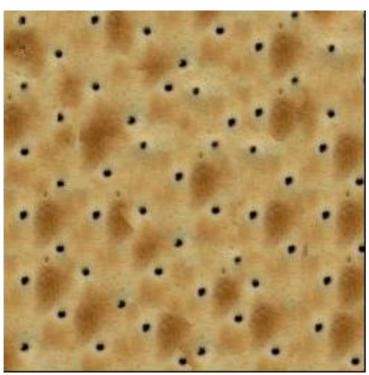


















Failures (Chernobyl Harvest)

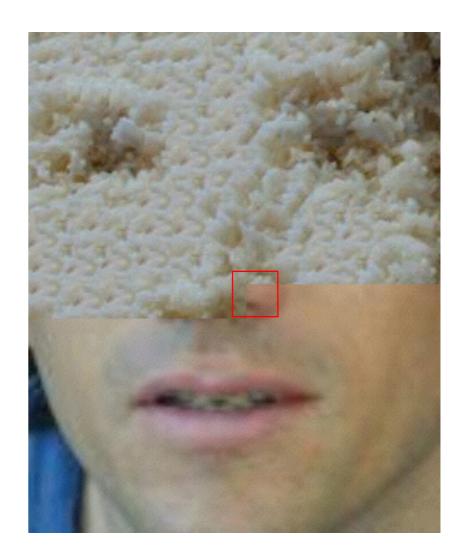






### Texture transfer

- Take the texture from one object and "paint" it onto another object
  - This requires separating texture and shape
  - That's hard, but we can cheat
  - Assume we can capture shape by boundary and rough shading



Then, just add another constraint when sampling: similarity to underlying image at that spot



#### parmesan





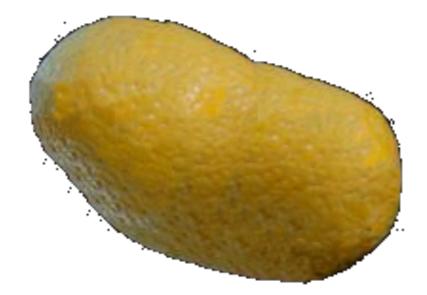


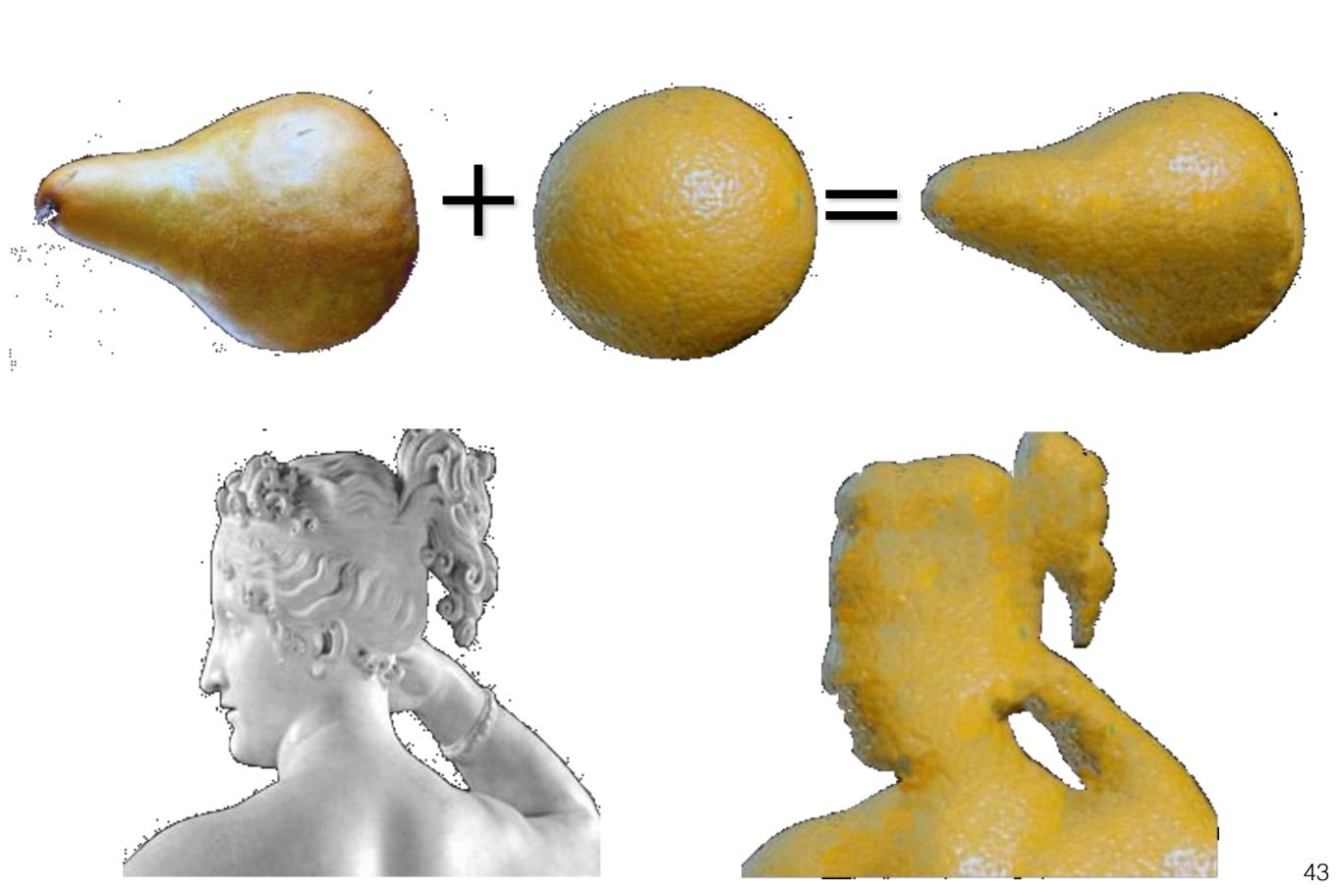
rice











#### (Manual) texture synthesis in the media



http://www.dailykos.com/story/2004/10/27/22442/878

#### Conclusion

- Texture is a useful property that is often indicative of materials, appearance cues
- Texture representations attempt to summarize repeating patterns of local structure
- Filter banks useful to measure redundant variety of structures in local neighborhood
  - Feature spaces can be multi-dimensional
  - Vector quantize to build histograms
- Neighborhood statistics can be exploited to "sample" or synthesize new texture regions
  - Example-based technique

# Further thoughts and readings ...

- Texture and human psychophysics
  - Bela Julesz, Textons, the elements of texture perception and their interactions, Nature 1981 pdf
  - N. Bhusan et al., The Texture Lexicon: Understanding the Categorization of Visual Texture Terms and Their Relationship to Texture Images pdf
- Texture representation
  - Are filter banks necessary? (Varma and Zisserman, CVPR 2003)
  - Local binary patterns (Ojala, Pietikainen, Maenpaa, PAMI 2002)
- State of the art in texture classification
  - <u>http://people.cs.umass.edu/~smaji/papers/textures-cvpr14.pdf</u>
  - Learning to detect describable attributes, e.g. lined, dotted, blotchy, striped, checkered, etc.