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e Homework 2 ts was due today

e Homework 3 posted!

e mplement a "blob detector”
¢ due on October 20
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Recap: last few lectures

Convolution

e | inearity and separability

Edge detection

e Find locations where there is high derivatives

e Canny edge detector - linking weak edges with strong edges
Corner detection

e [ind locations where intensity changes rapidly in all directions
Blob detection (scale covariant detector)

e Convolve with a Laplacian of Gaussian at multiple scales

¢ Find maxima over scale and space



Jexture
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widespread, easy to recognize, but hard to define



Includes: more regular patterns
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Includes: more random patterns




Texture-related tasks

e Shape from texture

e [stimate surface orientation or shape from image
texture




Shape from texture

e Use deformation of texture from point to point to
estimate surface shape

Pics from A. Loh: http://www.csse.uwa.edu.au/~angie/phdpics1.html 8



Texture-related tasks

e Shape from texture

e [stimate surface orientation or shape from image
fexture

e Segmentation/classification from texture cues
e Analyze, represent texture
e (Group image regions with consistent texture
e Synthesis

o (Generate new texture patches/images given some
examples




Analysis vs. Synthesis
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Images: Bill Freeman, A. Efros 10
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Texture Is indicative of material




.. Of object type, especially when shape is not useful
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.. Of object type especnally when shape is not useful

http://animals.nationalgeographic.com/ 13



Why analyze texture”

* |mportance to perception:

e Often indicative of a material’'s properties, e.g. shiny
vS. rough. There Is evidence that we can do this using
visual cues only (Edelson et al.)

 Can be important a

opearance cue, especially it shape
ects

IS similar across ob]

* Aim to distinguish between occlusion boundaries and
texture — good for recognition.

 Technically:

 Representation-wise, we want a feature one step

above "building blo

cks” of corners, blobs and edges.
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Psychophysics of texture

e Some textures distinguishable with pre-attentive

perception — without scrutiny, eye movements
Julesz 1975]

Same or different?

15



Il 11k
41141l L--

4lT L 4Ll4-
FTHETAHTL
l-1-FFL1T

411414+
Lo Lroenr

B I B (S N
I o I i I I

rare i 1ro

Lrorreroer
W R I S

16



17



Textons
“local” unit of texture
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Texture representation

e [extures are made up of repeated local patterns, so:

e Find the patterns
Use filters that look like patterns

* e.g.spots, edges, bars
Consider magnitude of response
e Describe thelr statistics within each local window

Because texture is not entirely local. We need to see a few
dots to describe it as dotted. Ditto for lined, checkered

But can't be too large, otherwise the description wouldn't

change
The choice of scale Is Important for description

Kristen Grauman 19



Texture representation: example

mean d/ | mean d/
dx value |dy value

Win. #1 4 10

original image

statistics to summarize

derivative filter patter_ns in small
Kristen Grauman responses, squared windows 20



Texture representation: example
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original image
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Texture representation: example

mean d/ | mean d/
dx value |dy value

Win. #1 4 10

Win.#2 18 7

original image
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derivative filter patter_ns in small
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Texture representation: example

mean d/ | mean d/
dx value |dy value

Win.#1 | 4 10
Win#2 | 18 7
Win#9 | 20 20

original image

statistics to summarize

derivative filter patter_ns in small
Kristen Grauman responses, squared windows 23



Texture representation: example

©
3
)
>
>
©
—
©
c
(C
(<)
E
N
c
<
2]
c
(<)
E
=

Kristen Grauman

>

Dimension 1 (mean d/dx value)

Win. #1
Win.#2

Win.#9

mean d/

18

20

dx value

mean d/
dy value

10

20

statistics to summarize

patterns in small
windows
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Texture representation: example

Windows with
primarily horizontal Both
edges
S mean d/ | mean d/
o dx value |dy value
>
B
'g Win. #1 4 10
©
e Win.#2 18 7
o :
S Win.#9 20 20
[0
c
Q
E
Q Dimensjon 1 (mean d/dx value) .
Windows with Windows with
small gradient in primarily vertical statistics to summarize
both directions edges patterns in small
windows

Kristen Grauman 25



Texture representation: example

ginal
original image visualization of the

assignment to texture
“types!!

derivative filter
Kristen Grauman responses, squared o6



Texture representation: example

Dimension 2 (mean d/dy value)

Kristen Grauman
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Close; similar textures.

Dimension 1 (mean d/dx value)

statistics to summarize

mean d/ | mean d/

dx value |dy value
WS 41 | 4 10
Win.#2 18 7
Win#9 | 20 20

patterns in small
windows

27



Texture representation: example

A % 20 D(a,b) = \/(al — bl)z + (a2 - bz)z

Dimension 2
s
S
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Texture representation: example

Dimension 2
s
S
o

Dimension 1

Distance reveals how dissimilar
texture from window a is from
texture In window b.

Kristen Grauman
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Texture representation: window scale

e \We're assuming we know the relevant window size for
which we collect these statistics.

Possible to perform scale

selection by looking for
window scale where texture

description not changing.

30



Filter banks

e Our previous example used two filters, and resulted in a
2-dimensional feature vector to describe texture in a

window.
e x and y derivatives revealed something about local structure.

e \We can generahze to apply a collection of multiple (d)
filters: a “filter bank”

e Then our feature vectors will be d-dimensional.
e still can think of nearness, farness in feature space

31



Filter banks

e \What filters to put in the bank?

e [ypically we want a combination of scales and
orientations, different types of patterns.

orientations
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scales

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vqa/research/texclass/filters.html
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http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Multivariate Gaussian

(- _ L L Ty =1,
plrp, X)) = COREDIE exp (—2(.1 — )X (r — ;1))
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Image from http://www.texasexplorer.com/austincap2.j

Kristen Grauman
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http://www.texasexplorer.com/austincap2.jpg

Kristen Grauman
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Kristen Grauman
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Kristen Grauman
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Kristen Grauman
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We can form a
feature vector
from the list of
responses at
@ each pixel.
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d-dimensional features

d
E (a,—b.)>  Euclidean distance (L,)
=1




Counting in high dimensions

e [exture is a set of textons repeated in some way

e How do we find these repeated patterns?

e However, the representation is continuous so we cannot
simply count the number of times we see a feature

e Vector quantization allows counting Iin high dimensions
Cluster the vectors into a fixed number of groups

Replace each vector with the the cluster center closest to it
e (Often is better than binning.
e Each cluster is represented by a number, counting is easy.

e Anyreasonable clustering method can be used.

S/



K-means for vector guantization

Given a set of observations (x1, X2, ..., Xn), Where each
observation is a d-dimensional real vector, k-means
clustering aims to partition the n observations into k (= n)
sets S =[Sy, Sy, ..., Sk} so as to minimize the within-cluster
sum of squares (WCSS). In other words, its objective is to

find:

k

. 2

arg min Z Z |x — . ||”
S

1=1 x&5;

where piis the mean of points in S..

Easy to compute g given S and vice versa.

http:/en.wikipedia.org/wiki/K-means_clustering 58



http://en.wikipedia.org/wiki/K-means_clustering

| loyd’s algorithm for k-means

e |nitialize k centers by picking k-points randomly

e Repeat till convergence (or max iterations)
e Assign each point to the nearest center (assignment step)

e Estimate the mean of each group (update step)

MATLAB  [idx, c] = kmeans(X, k)

59



K-means In action
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http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/

| loyd’s algorithm for k-means

e |nitialize k centers by picking k-points randomly

e Repeat till convergence (or max iterations)
e Assign each point to the nearest center (assignment step)

e Estimate the mean of each group (update step)

MATLAB  [idx, c] = kmeans(X, k)

e Simple, fast and works well in practice

e But can be unstable

Run multiple times and the best solution (one with the smallest WCSS)

Better initializations are possible (e.g. kmeans++)

61



Textons In Images

clustering into k=64 centers

- } ' : Y ’ g

-

4 R T N
= P T e S
DR "'.‘4'-2?":‘-1?" R

con

olution with .1,

o i el

AN cluster | (k-means)

S —~\ |/~

S\ N | 7/
g ‘" ‘"~

square aggregate '
> >




Uses of texture In vision:
analysis



Classifying materials,

Leaves

| R

Nowvel image to
be classified

Velvet

otraw

Figure by Varma & Zisserman

Global texton histogram is a good representation

Kristen Grauman 64



Texture features for image retrieval

" 4)130051 - o) 1;0099 2

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a metric for
image retrieval. International Journal of Computer Vision, 40(2):99-121, November
2000,

Kristen Grauman 65



Characterizing
scene
categories by
texture

mountain

farm

street

bathroom

L. W. Renninger and
Man-made J. Malik. When is
indoor scene identification
just texture
recognition? Vision
Research 44 (2004)
2301-2311

bedroom

kitchen

livingroom ’
Kristen Gr#timait
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Kristen Grauman

Segmenting
aerial imagery by
textures

http://www.airventure.org/2004/gallery/images/073104_satellite.jpg 67



