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• Homework 2 is was due today 
• Homework 3 posted! 

• implement a “blob detector” 
• due on October 20

Administrivia
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• Convolution 
• Linearity and separability 

• Edge detection 
• Find locations where there is high derivatives 
• Canny edge detector - linking weak edges with strong edges 

• Corner detection 
• Find locations where intensity changes rapidly in all directions 

• Blob detection (scale covariant detector) 
• Convolve with a Laplacian of Gaussian at multiple scales 
• Find maxima over scale and space

Recap: last few lectures
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Texture
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widespread, easy to recognize, but hard to define



Includes: more regular patterns
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Includes: more random patterns
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• Shape from texture 
• Estimate surface orientation or shape from image 

texture

Texture-related tasks
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• Use deformation of texture from point to point to 
estimate surface shape

Shape from texture

8Pics from A. Loh: http://www.csse.uwa.edu.au/~angie/phdpics1.html



• Shape from texture 
• Estimate surface orientation or shape from image 

texture 
• Segmentation/classification from texture cues 

• Analyze, represent texture 
• Group image regions with consistent texture 

• Synthesis 
• Generate new texture patches/images given some 

examples

Texture-related tasks
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Analysis vs. Synthesis

10Images: Bill Freeman, A. Efros

Why analyze texture?
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Texture is indicative of material
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.. of object type, especially when shape is not useful



13http://animals.nationalgeographic.com/

.. of object type, especially when shape is not useful



• Importance to perception: 
• Often indicative of a material’s properties, e.g. shiny 

vs. rough. There is evidence that we can do this using 
visual cues only (Edelson et al.) 

• Can be important appearance cue, especially if shape 
is similar across objects 

• Aim to distinguish between occlusion boundaries and 
texture — good for recognition. 

!
• Technically:  

• Representation-wise, we want a feature one step 
above “building blocks” of corners, blobs and edges.

Why analyze texture?
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• Some textures distinguishable with pre-attentive 
perception – without scrutiny, eye movements       
[Julesz 1975]

Psychophysics of texture
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Same or different?



16



17



18

Textons 
“local” unit of texture



• Textures are made up of repeated local patterns, so: 
• Find the patterns 

- Use filters that look like patterns  
• e.g. spots, edges, bars 

- Consider magnitude of response 
• Describe their statistics within each local window 

- Because texture is not entirely local. We need to see a few 
dots to describe it as dotted. Ditto for lined, checkered 

- But can’t be too large, otherwise the description wouldn’t 
change 

- The choice of scale is important for description

Texture representation

19Kristen Grauman



Texture representation: example
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Texture representation: example
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Texture representation: example
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original image

derivative filter 
responses, squared

visualization of the 
assignment to texture 

“types” 

Kristen Grauman

Texture representation: example



Texture representation: example
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Texture representation: example
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Texture representation: example

29

Dimension 1

D
im

en
si

on
 2

a

b

a

b

Distance reveals how dissimilar 
texture from window a is from 
texture in window b.

b

Kristen Grauman



• We’re assuming we know the relevant window size for 
which we collect these statistics.

Texture representation: window scale
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Possible to perform scale 
selection by looking for 
window scale where texture 
description not changing.



• Our previous example used two filters, and resulted in a 
2-dimensional feature vector to describe texture in a 
window. 
• x and y derivatives revealed something about local structure. 

• We can generalize to apply a collection of multiple (d) 
filters: a “filter bank” 

• Then our feature vectors will be d-dimensional. 
• still can think of nearness, farness in feature space

Filter banks
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• What filters to put in the bank? 
• Typically we want a combination of scales and 

orientations, different types of patterns.

Filter banks
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Matlab code available for these examples:  
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

scales

orientations

“Edges” “Bars”

“Spots”

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html


Multivariate Gaussian
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Filter bank
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http://www.texasexplorer.com/austincap2.jpg
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Showing magnitude of responses

Kristen Grauman
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[r1, r2, …, r38]

We can form a 
feature vector 
from the list of 
responses at 
each pixel.

Kristen Grauman



d-dimensional features
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• Texture is a set of textons repeated in some way 
• How do we find these repeated patterns? 
• However, the representation is continuous so we cannot 

simply count the number of times we see a feature 
• Vector quantization allows counting in high dimensions 

- Cluster the vectors into a fixed number of groups 
- Replace each vector with the the cluster center closest to it 

• Often is better than binning. 
• Each cluster is represented by a number, counting is easy. 
• Any reasonable clustering method can be used.

Counting in high dimensions
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Given a set of observations (x1, x2, …, xn), where each 
observation is a d-dimensional real vector, k-means 
clustering aims to partition the n observations into k (≤ n) 
sets S = {S1, S2, …, Sk} so as to minimize the within-cluster 
sum of squares (WCSS). In other words, its objective is to 
find:

K-means for vector quantization
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where μi is the mean of points in Si.

http://en.wikipedia.org/wiki/K-means_clustering

Easy to compute μ given S and vice versa.

http://en.wikipedia.org/wiki/K-means_clustering


• Initialize k centers by picking k-points randomly 
• Repeat till convergence (or max iterations) 

• Assign each point to the nearest center (assignment step) 
• Estimate the mean of each group (update step)

Lloyd’s algorithm for k-means
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MATLAB       [idx, c] = kmeans(X, k)



K-means in action

60http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/

http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/


• Initialize k centers by picking k-points randomly 
• Repeat till convergence (or max iterations) 

• Assign each point to the nearest center (assignment step) 
• Estimate the mean of each group (update step) 

!

!

• Simple, fast and works well in practice 
• But can be unstable 

- Run multiple times and the best solution (one with the smallest WCSS) 
- Better initializations are possible (e.g. kmeans++)

Lloyd’s algorithm for k-means
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MATLAB       [idx, c] = kmeans(X, k)



Textons in images
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clustering into k=64 centersimage

convolution with f.b.
cluster

square aggregate

(k-means)



Uses of texture in vision: 
analysis
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Classifying materials, “stuff”
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Figure by Varma & Zisserman

Kristen Grauman

Global texton histogram is a good representation



Texture features for image retrieval
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Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a metric for 
image retrieval. International Journal of Computer Vision, 40(2):99-121, November 
2000, 

Kristen Grauman
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Characterizing 
scene 
categories by 
texture

L. W. Renninger and 
J. Malik.  When is 
scene identification 
just texture 
recognition? Vision 
Research 44 (2004) 
2301–2311

Kristen Grauman



67http://www.airventure.org/2004/gallery/images/073104_satellite.jpg

Segmenting 
aerial imagery by 
textures

Kristen Grauman


